![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
This book reviews the current state of knowledge of the
atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus,
and Neptune. The current theories of their formation are reviewed
and their recently observed temperature, composition and cloud
structures are contrasted and compared with simple thermodynamic,
radiative transfer and dynamical models. The instruments and
techniques that have been used to remotely measure their
atmospheric properties are also reviewed, and the likely
development of outer planet observations over the next two decades
is outlined.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
'Be brave, be curious, be determined, overcome the odds. It can be done' Will we survive on Earth? Should we colonise space? Throughout his extraordinary career, Stephen Hawking expanded our understanding of the universe and unravelled some of its greatest mysteries. In Will We Survive on Earth? the world-famous cosmologist and bestselling author of A Brief History of Time turns his attention to one of the most urgent issues for humankind and explores our options for survival. 'Effortlessly instructive, absorbing and witty' Guardian Brief Answers, Big Questions: this stunning paperback series offers electrifying essays from one of the greatest minds of our age, taken from the original text of the No. 1 bestselling Brief Answers to the Big Questions.
Our universe seems strangely "biophilic," or hospitable to life. Is this happenstance, providence, or coincidence? According to cosmologist Martin Rees, the answer depends on the answer to another question, the one posed by Einstein's famous remark: "What interests me most is whether God could have made the world differently." This highly engaging book explores the fascinating consequences of the answer being "yes." Rees explores the notion that our universe is just a part of a vast "multiverse," or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. Rees begins by exploring the nature of our solar system and examining a range of related issues such as whether our universe is or isn't infinite. He asks, for example: How likely is life? How credible is the Big Bang theory? Rees then peers into the long-range cosmic future before tracing the causal chain backward to the beginning. He concludes by trying to untangle the paradoxical notion that our entire universe, stretching 10 billion light-years in all directions, emerged from an infinitesimal speck. As Rees argues, we may already have intimations of other universes. But the fate of the multiverse concept depends on the still-unknown bedrock nature of space and time on scales a trillion trillion times smaller than atoms, in the realm governed by the quantum physics of gravity. Expanding our comprehension of the cosmos, Our Cosmic Habitat will be read and enjoyed by all those--scientists and nonscientists alike--who are as fascinated by the universe we inhabit as is the author himself.
This book addresses the fascinating subject of astrophysics from its theoretical basis to predominant research conducted in the field today. An accomplished researcher in the field and a well-known expositor, the author strikes a balance that allows the serious reader to appreciate the current issues without previous knowledge of the subject.Astronomy and Astrophysics * The Equations of Stellar Structure * The Gas Characteristics * The Structure of a Star * Computation of Stellar Evolution * Evolutionary Track * Binary Systems * Star Formation * Rotation of Stars * Supernova * Close Binary Systems * Special Topics * The Galaxy
For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. It is previously published in Solar Physics journal, Vol. 273/2, 2011.
The Local Group of galaxies consists of the Milky Way and all of its neighbors. The proximity of these galaxies allows for detailed studies of the processes that have led to their formation, structures, and evolution. In particular, studies of the Local Group can test predictions of structure formation that are based on dark energy and cold dark matter. This book presents a collection of review papers, written by world experts, on some of the most important aspects of Local Group Astrophysics. It is an invaluable resource for both professional researchers and graduate students in this cutting-edge area of research.
This is a modern textbook that guides the reader through the theory and practice of satellite orbit prediction and determination. Starting from the basic principles of orbital mechanics, it covers elaborate force models as well as precise methods of satellite tracking. Emphasis is on numerical treatment and a multitude of algorithms adopted in modern satellite trajectory computation are described in detail. The accompanying CD-ROM includes all source codes written in C++ and relevant data files for applications. The result is a powerful and unique spaceflight dynamics library which allows easy software extensions by the user. An extensive collection of Internet resources is provided through WWW hyperlinks to detailed and frequently updated online information on spaceflight dynamics. The book addresses students, scientist working in the field of navigation, geodesy and spaceflight technology and satellite engineers and operators focusing on spaceflight dynamics.
Challenges of Astronomy in a unique collection of thirty astronomy
experiments ranging from ancient astronomy to cosmology. Each of
the experiments contains one or more challenges for the reader. The
progression is from the Earth outward through the solar system to
the stellar and galactic realm. Topics include the shape of the
sky, Stonehenge as a stoneage abacus, determination of the size of
the Earth, the distance of the Moon and planets, Kepler's laws,
planetary mass and density, the temperatures and atmospheres of
planets, the speed of light, the distances of stars, the nature of
the quiet and active Sun, photometry and spectroscopy, stars
clusters and variable stars, fundamental properties of stars, and
Olber's paradox.
Dust is widespread in the galaxy. To astronomers studying stars it
may be just an irritating fog, but it is becoming widely recognized
that cosmic dust plays an active role in astrochemistry. Without
dust, the galaxy would have evolved differently, and planetary
systems like ours would not have occurred.
Since humans first looked up at the stars, astronomy has had a particular ability to stir the imagination and challenge the thinking of scientists and non-scientists alike. Astronomy: The Human Quest for Understanding is an introductory astronomy textbook specifically designed to relate to non-science majors across a wide variety of disciplines, nurture their curiosity, and develop vital science-based critical-thinking skills. This textbook provides an introduction to how science operates in practice and what makes it so successful in uncovering nature's secrets. Given that the study of astronomy dates back thousands of years, it is the ideal subject for tracing the development of the physical sciences and how our evolving understanding of nature has influenced, and been influenced by, mathematics, philosophy, religion, geography, politics, and more. This historical approach also illustrates how wrong turns have been taken, and how the inherent self-correcting nature of science through constant verification and the falsifiability of truly scientific theories ultimately leads us back to a more productive path in our quest for understanding. This approach also points out why, as a broadly educated citizenry, students of all disciplines must understand how scientists arrive at conclusions, and how science and technology have become central features of modern society. In discussing this fascinating and beautiful universe of which we are a part, it is necessary to illustrate the fundamental role that mathematics plays in decoding nature's mysteries. Unlike other similar textbooks, some basic mathematics is integrated naturally into the text, together with interpretive language, and supplemented with numerous examples; additional tutorials are provided on the book's companion website. Astronomy: The Human Quest for Understanding leads the reader down the path to our present-day understanding of our Solar System, stars, galaxies, and the beginning and evolution of our universe, along with profound questions still to be answered in this ancient, yet rapidly changing field.
This textbook is a pedagogic introduction to a number of phenomena employing fluid mechanics. Beginning with basic concepts and conservation laws for neutral and charged fluids, the authors apply and develop them to understand aerodynamics, locomotion of micro-organisms, waves in air and water, shock waves, hydrodynamic and hydromagnetic instabilities, stars and black holes, blood flow in humans, and superfluids. The approach is to consider various striking topics on fluid mechanics, without losing necessary mathematical rigor. The book balances the qualitative explanations with formal treatment, in a compact manner. A special focus is given to the important and difficult subject of turbulence and the book ends with a discussion on turbulence in quantum fluids. The textbook is dotted by a number of illustrative examples, mostly from real life, and exercises. The textbook is designed for a one semester course and addresses students at undergraduate and graduate level in physics or engineering, who want to research in the fields as diverse as aeronautics, meteorology, cosmology, biomechanics, and mathematical physics. It is requested knowledge of an undergraduate level course on mathematical methods to better understand the topics presented here.
This book is a collection of lectures given in July 2007 at the Les
Houches Summer School on "String Theory and the Real World: From
particle physics to astrophysics."
'The first two editions of this textbook have received well-deserved high acclaims, and this - the third edition - deserves no less. Its explanations of the whole gamut of atomic and molecular spectroscopy provide a solid grasp of the theory as well as how to understand such spectra in practice. It thus makes an ideal companion to books that start from the observational aspect of spectroscopy, whether in the lab or at the telescope ... This new edition of TennysonaEURO (TM)s book ought to be in the library of every astronomical department.'The Observatory Magazine'It closely follows the course given to third year UCL undergraduates, and the worked examples have surely been tested on students ... The last two chapters serve as an effective appendix on more specialised topics in atomic and molecular theory.'Contemporary PhysicsThe third edition of Astronomical Spectroscopy examines the physics necessary to understand and interpret astronomical spectra. It offers a step-by-step guide to the atomic and molecular physics involved in providing astronomical spectra starting from the relatively simple hydrogen atom and working its way to the spectroscopy of small molecules.Based on UCL course material, this book uses actual astronomical spectra to illustrate the theoretical aspects of the book to give the reader a feel for such spectra as well as an awareness of what information can be retrieved from them. It also provides comprehensive exercises, with answers given, to aid understanding.
Unifying the Universe: The Physics of Heaven and Earth presents a non-technical approach to physics for the lay-science enthusiast. This popular textbook, which evolved from a conceptual course at Cornell University, is intended for non-science undergraduate students taking their first physics module. This second edition maintains its unique approach in crossing boundaries between physics and humanities, with connections to art, poetry, history, and philosophy. It explores how the process of scientific thought is inextricably linked with cultural, creative, and aesthetic aspects of human endeavor, opening the readers up to new ways of looking at the world. The text has been fully updated throughout to address current and exciting new topics in the field, such as exo-planets, the accelerating Universe, dark matter, dark energy, gravitational waves, super-symmetry, string theory, big bang cosmology, and the Higgs boson. There is also an entirely new chapter on the Quantum World, which connects the fascinating topics of quantum entanglement and quantum computing. Key Features: Provides a solid, yet accessible, background to basic physics without complex mathematics Uses a human interest approach to show how science is significant for more than its technological consequences Discusses the arts and philosophies of historical periods that are pertinent to the subject
This volume gathers the content of the courses held at the Third IDPASC School, which took place in San Martino Pinario, Hospederia and Seminario Maior, in the city of Santiago de Compostela, Galiza, Spain, from January 21st to February 2nd, 2013. This school is the annual joint program of the International Doctorate Network in Particle Physics, Astrophysics, and Cosmology (IDPASC). The purpose of the school series is to present doctoral students from different universities and laboratories in Europe and beyond with a broad range of the latest results and current state of the art in the fields of Particle Physics, Astrophysics, and Cosmology, and to further introduce them to both the questions now posed by the potentials of physics and to challenges connected with current and future experiments - in particular, with the newly available energy ranges. Following these guidelines, the content of this third edition of the IDPASC School was jointly planned by the Academic Council and by the network's International Committee, whose members ensure every year its timely formulation, keeping up with the constant evolution of these fields. The program covers a balanced range of the latest developments in these fields worldwide, with courses offered by internationally acknowledged physicists on the Basic Features of Hadronic Processes, Quantum Chromodynamics, Physics and Technology of ALICE, LHCb Physics-Parity Violation, the Higgs System in and beyond the Standard Model, Higgs Searches at the LHC, Theory and Experiments with Cosmic Rays, Numerical Methods and Data Analysis in Particle Physics, Theoretical Cosmology, and AdS/CFT Correspondence. Most of these courses were complemented by practical and discussion sessions.
This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with 'quick questions' to spur practice in basic computations, together with more challenging multi-part exercises at the end of each chapter. Advanced concepts like the quantum nature of energy and radiation are developed as needed. The text's approach and level bridge the wide gap between introductory astronomy texts for non-science majors and advanced undergraduate texts for astrophysics majors.
The goal of IAU Symposium 359 on 'Galaxy Evolution and Feedback across Different Environments' (GALFEED) was to bring together the active galactic nuclei (AGN) and galaxy evolution scientific communities. The AGN phase occurs in most galaxies and critically influences their evolution, so it is important to study the two processes together and for researchers, in both topics, to learn from one another. They ask key questions such as: How do galaxies acquire their gas and how efficiently is it transformed into stars? How is the supermassive black hole in a galaxy center fuelled to become an AGN? What is the main physical mechanism that quenches star formation? How powerful are the stellar and AGN feedback processes in regulating galaxy evolution? And what is the role of the environment on galaxy evolution and AGN triggering? Astronomers engage in these discussions spanning from early galaxies to the present day.
The invention and development of advanced methods to detect light underlies much of modern technology. This fully updated and restructured third edition is unique amongst the literature, providing a comprehensive, uniform discussion of a broad range of detection approaches. The material is accessible to a broad range of readers rather than just highly trained specialists, beginning with first principles and developing the relevant physics as it goes. The book emphasizes physical understanding of detector operation, without being a catalog of current examples. It is self-contained but also provides a bridge to more specialized works on specific approaches; each chapter points readers toward the relevant literature. This will provide a broad and lasting understanding of the methods for detecting light that underpin so much of our technology. The book is suitable for advanced undergraduate and graduate students, and will provide a valuable reference for professionals across physics and engineering disciplines.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
What if life isn't just a part of the universe . . . what if it determines the very structure of the universe itself? The theory that blew your mind in Biocentrism and Beyond Biocentrism is back, with brand-new research revealing the startling truth about our existence. What is consciousness? Why are we here? Where did it all come from-the laws of nature, the stars, the universe? Humans have been asking these questions forever, but science hasn't succeeded in providing many answers-until now. In The Grand Biocentric Design, Robert Lanza, one of Time Magazine's "100 Most Influential People," is joined by theoretical physicist Matej Pavsic and astronomer Bob Berman to shed light on the big picture that has long eluded philosophers and scientists alike. This engaging, mind-stretching exposition of how the history of physics has led us to Biocentrism-the idea that life creates reality-takes readers on a step-by-step adventure into the great science breakthroughs of the past centuries, from Newton to the weirdness of quantum theory, culminating in recent revelations that will challenge everything you think you know about our role in the universe. This book offers the most complete explanation of the science behind Biocentrism to date, delving into the origins of the memorable principles introduced in previous books in this series, as well as introducing new principles that complete the theory. The authors dive deep into topics including consciousness, time, and the evidence that our observations-or even knowledge in our minds-can affect how physical objects behave. The Grand Biocentric Design is a one-of-a-kind, groundbreaking explanation of how the universe works, and an exploration of the science behind the astounding fact that time, space, and reality itself, all ultimately depend upon us.
|
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
|