Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
New telescopes spanning the full electromagnetic spectrum have enabled the study of supernovae (SNe) and supernova remnants (SNRs) to advance at a breathtaking pace. Automated synoptic surveys have increased the detection rate of supernovae by more than an order of magnitude and have led to the discovery of highly unusual supernovae. Observations of gamma-ray emission from SNRs with ground-based Cherenkov telescopes and the Fermi telescope have spawned new insights into particle acceleration in supernova shocks. Far-infrared observations from the Spitzer and Herschel observatories have told us much about the properties and fate of dust grains in SNe and SNRs. Work with satellite-borne Chandra and XMM-Newton telescopes and ground-based radio and optical telescopes reveal signatures of supernova interaction with their surrounding medium, their progenitor life history and of the ecosystems of their host galaxies. IAU Symposium 296 covers all these advances, focusing on the interactions of supernovae with their environments.
Planet formation studies uniquely benefit from three disciplines: astronomical observations of extrasolar planet-forming disks, analysis of material from the early Solar System, and laboratory astrophysics experiments. Pre-planetary solids, fine dust, and chondritic components are central elements linking these studies. This book is the first comprehensive overview of planet formation, in which astronomers, cosmochemists, and laboratory astrophysicists jointly discuss the latest insights from the Spitzer and Hubble space telescopes, new interferometers, space missions including Stardust and Deep Impact, and laboratory techniques. Following the evolution of solids from their genesis through protoplanetary disks to rocky planets, the book discusses in detail how the latest results from these disciplines fit into a coherent picture. This volume provides a clear introduction and valuable reference for students and researchers in astronomy, cosmochemistry, laboratory astrophysics, and planetary sciences.
In recent years cosmologists have advanced from largely qualitative models of the Universe to precision modelling using Bayesian methods, in order to determine the properties of the Universe to high accuracy. This timely book is the only comprehensive introduction to the use of Bayesian methods in cosmological studies, and is an essential reference for graduate students and researchers in cosmology, astrophysics and applied statistics. The first part of the book focuses on methodology, setting the basic foundations and giving a detailed description of techniques. It covers topics including the estimation of parameters, Bayesian model comparison, and separation of signals. The second part explores a diverse range of applications, from the detection of astronomical sources (including through gravitational waves), to cosmic microwave background analysis and the quantification and classification of galaxy properties. Contributions from 24 highly regarded cosmologists and statisticians make this an authoritative guide to the subject.
'Dark energy' is the name given to the unknown cause of the Universe's accelerating expansion, which is one of the most significant and surprising discoveries in recent cosmology. Understanding this enigmatic ingredient of the Universe and its gravitational effects is a very active, and growing, field of research. In this volume, twelve world-leading authorities on the subject present the basic theoretical models that could explain dark energy, and the observational and experimental techniques employed to measure it. Covering the topic from its origin, through recent developments, to its future perspectives, this book provides a complete and comprehensive introduction to dark energy for a range of readers. It is ideal for physics graduate students who have just entered the field and researchers seeking an authoritative reference on the topic.
It has been more than fifty years since the first significant paper on accretion flows was written. In recent years, X-ray satellites capable of identifying accretion disks and radiation jets - indications that accretion has taken place - have significantly advanced our understanding of these phenomena. This volume presents a comprehensive and up-to-date introduction to the major theoretical and observational topics associated with accretion processes in astrophysics. Comprising lectures presented at the twenty-first Winter School of the Canary Islands Institute of Astrophysics, the text emphasises the physical aspects of accretion, investigating how radiation jets are produced, how accretion power is divided between jets and radiated energy, the geometry of accretion flow, and the accretion processes of active galactic nuclei. Written by an international team of experienced scientists, chapters offer young researchers key analytical tools for supporting and carrying out the next generation of front-line research.
Our understanding of stars has grown significantly due to recent advances in asteroseismology, the stellar analog of helioseismology, the study of the Sun's acoustic wave oscillations. Using ground-based and satellite observatories to measure the frequency spectra of starlight, researchers are able to probe beneath a star's surface and map its interior structure. This volume provides a wide-ranging and up-to-date overview of the theoretical, experimental and analytical tools for carrying out front-line research in stellar physics using asteroseismological observations, tools and inferences. Chapters from seven eminent scientists in residence at the twenty-second Canary Islands Winter School of Astrophysics examine the interior of our Sun relative to data collected from distant stars, how to measure the fundamental parameters of single field stars, diffusion processes, and the effects of rotation on stellar structures. The volume also provides detailed treatments of modeling and computing programs, providing astronomers and graduate students a practical, methods-based guide.
The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measurements of flattening of the solar surface by SDO showed that the Sun's shape is linked to the rotation of the core. It is shown how such a result is generalizable to the stars.
Dark matter is among the most important open problems in modern physics. Aimed at graduate students and researchers, this book describes the theoretical and experimental aspects of the dark matter problem in particle physics, astrophysics and cosmology. Featuring contributions from 48 leading theorists and experimentalists, it presents many aspects, from astrophysical observations to particle physics candidates, and from the prospects for detection at colliders to direct and indirect searches. The book introduces observational evidence for dark matter along with a detailed discussion of the state-of-the-art of numerical simulations and alternative explanations in terms of modified gravity. It then moves on to the candidates arising from theories beyond the Standard Model of particle physics, and to the prospects for detection at accelerators. It concludes by looking at direct and indirect dark matter searches, and the prospects for detecting the particle nature of dark matter with astrophysical experiments.
Looking at the night sky, you’d be forgiven for thinking it’s all quiet up there in space. But you’d be wrong. Extreme events are forever unfolding: galaxies explode, cosmic debris hurtles through the heavens and our own Milky Way is on a collision course with the giant Andromeda galaxy. Mayhem moulded the cosmos, shaped life on Earth and at times threatened to end it. With an enduring sense of wonder, through cataclysms great and small, Bob Berman presents a destructive history of our universe.
One of the most fascinating unresolved problems of modern astrophysics is how the galaxies we observe today were formed. The Lambda-Cold Dark Matter paradigm predicts that large spiral galaxies such as the Milky Way formed through accretion and tidal disruption of satellite galaxies. The galaxies of the Local Group provide the best laboratory in which to investigate these galaxy formation processes because they can be studied with sufficiently high resolution to exhume fossils of galactic evolution embedded in the spatial distribution, kinematics, and chemical abundances of their oldest stars. Based on the twentieth Winter School of the Canary Islands Institute of Astrophysics, this volume provides a firm grounding for graduate students and early career researchers working on Local Group cosmology. It presents modules from eight eminent and experienced scientists at the forefront of Local Group research, and includes overviews of observational techniques, diagnostic tools, and various theoretical models.
What if life isn't just a part of the universe . . . what if it determines the very structure of the universe itself? The theory that blew your mind in Biocentrism and Beyond Biocentrism is back, with brand-new research revealing the startling truth about our existence. What is consciousness? Why are we here? Where did it all come from-the laws of nature, the stars, the universe? Humans have been asking these questions forever, but science hasn't succeeded in providing many answers-until now. In The Grand Biocentric Design, Robert Lanza, one of Time Magazine's "100 Most Influential People," is joined by theoretical physicist Matej Pavsic and astronomer Bob Berman to shed light on the big picture that has long eluded philosophers and scientists alike. This engaging, mind-stretching exposition of how the history of physics has led us to Biocentrism-the idea that life creates reality-takes readers on a step-by-step adventure into the great science breakthroughs of the past centuries, from Newton to the weirdness of quantum theory, culminating in recent revelations that will challenge everything you think you know about our role in the universe. This book offers the most complete explanation of the science behind Biocentrism to date, delving into the origins of the memorable principles introduced in previous books in this series, as well as introducing new principles that complete the theory. The authors dive deep into topics including consciousness, time, and the evidence that our observations-or even knowledge in our minds-can affect how physical objects behave. The Grand Biocentric Design is a one-of-a-kind, groundbreaking explanation of how the universe works, and an exploration of the science behind the astounding fact that time, space, and reality itself, all ultimately depend upon us.
Research into active galactic nuclei (AGN) - the compact, luminous hearts of many galaxies - is at the forefront of modern astrophysics. Understanding these objects requires extensive knowledge in many different areas: accretion disks, the physics of dust and ionized gas, astronomical spectroscopy, star formation, and the cosmological evolution of galaxies and black holes. This new text by Hagai Netzer, a renowned astronomer and leader in the field, provides a comprehensive introduction to the theory underpinning our study of AGN and the ways that we observe them. It emphasizes the basic physics underlying AGN, the different types of active galaxies and their various components, and the complex interplay between them and other astronomical objects. Recent developments regarding the evolutionary connections between active galaxies and star-forming galaxies are explained in detail. Both graduate students and researchers will benefit from Netzer's authoritative contributions to this exciting field of research.
Originally published in 1952, this book by E. A. Milne examines the life and work of influential astrophysicist Sir James Jeans. The text includes reproductions of correspondence between Jeans and such luminaries as G. H. Hardy and G. E. Hale, and is introduced by a personal memoir by the publisher S. C. Roberts. This book will be of value to anyone with an interest in Jeans' work and the history of astrophysics.
This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.
This is the problems and solution manual for the graduate text with the same title and published as Lecture Notes in Physics Vol 877 which provides the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. The very detailed and self-contained problems and solutions will be an essential part of the training of any graduate student wishing to enter and pursuing research in this field.
This Ph.D. thesis from the University of Birmingham UK opens new research avenues in the use of Pulsar Timing Arrays (PTAs) to study populations of super-massive black hole binaries through gravitational-wave observations. Chiara Mingarelli's work has shown for the first time that PTAs can yield information about the non-linear dynamics of the gravitational field. This is possible because PTAs capture, at the same time, radiation from the same source emitted at stages of its binary evolution that are separated by thousands of years. Dr. Mingarelli, who is the recipient of a Marie Curie International Outgoing Fellowship, has also been amongst the pioneers of the technique that will allow us to probe the level of anisotropy of the diffuse gravitational-wave background radiation from the whole population of super-massive black hole binaries in the Universe. Indeed, future observations will provide us with hints about the distribution of galaxies harboring massive black holes and insights into end products of hierarchical mergers of galaxies.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
The book deals with the development of continual models of turbulent natural media. Such models serve as a ground for the statement and numerical evaluation of the key problems of the structure and evolution of the numerous astrophysical and geophysical objects. The processes of ordering (self-organization) in an originally chaotic turbulent medium are addressed and treated in detail with the use of irreversible thermodynamics and stochastic dynamics approaches which underlie the respective models. Different examples of ordering set up in the natural environment and outer space are brought and thoroughly discussed, the main focus being given to the protoplanetary discs formation and evolution.
The remarkable environment of Antarctica offers many advantages for astronomical observations. Over the past two decades this field of scientific endeavour has developed dramatically and Antarctic-based observatories now regularly contribute to front line astrophysical research. This volume presents the Proceedings from the first ever International Astronomical Union Symposium to be held on the subject. After describing our knowledge of the special environment for Antarctic astronomy, it covers the following principal science areas: measuring the cosmic microwave background radiation; neutrino detection; cosmogenic signatures from the ice and atmosphere; submillimetre and terahertz astronomy; and optical and infrared astronomy. Each topic begins with reviews covering the field and the science being undertaken in it, followed by descriptions of the experiments, the telescopes and the results obtained. Another special feature surveys Antarctic stations and the astronomical facilities they contain. The volume concludes by considering the future for astronomical research in Antarctica.
The first three billion years of cosmic time were the prime epoch of galaxy formation. Characterising galaxies at this epoch is therefore crucial to achieving a major goal of modern astrophysics: to understand how galaxies such as our Milky Way emerged from the primordial density fluctuations in the early Universe and how they evolved through cosmic time. Recent major international investments in observing facilities such as the Atacama Large Millimetre Array (ALMA) and the James Webb Space Telescope (JWST) promise to provide the next leap in our understanding of this topic. This volume gathers the scientific contributions to the International Astronomical Union Symposium 352, which was devoted to this topic. The community of theoretical and observational experts discuss how we can make the most of ALMA and JWST synergies in advancing our understanding of galaxy evolution in the young Universe.
Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are discussed. A topic which transcends nuclear physics is discussed in two chapters: The proposed pseudo-complex extension of Einstein's General Relativity leads to the prediction that there are no black holes and that big bang cosmology has to be revised. Finally, the interdisciplinary nature of this volume is further accentuated by chapters on protein folding and on magnetoreception in birds and many other animals.
The twentieth-century witnessed the development of astrophysics and cosmology from subjects which scarcely existed to two of the most exciting and demanding areas of contemporary scientific inquiry. In this book Malcolm Longair reviews the historical development of the key areas of modern astrophysics, linking the strands together to show how they have led to the extraordinarily rich panorama of modern astrophysics and cosmology. While many of the great discoveries were derived from pioneering observations, the emphasis is upon the development of theoretical concepts and how they came to be accepted. These advances have led astrophysicists and cosmologists to ask some of the deepest questions about the nature of our Universe and have pushed astronomical observations to the very limit. This is a fantastic story, and one which would have defied the imaginations of even the greatest story-tellers.
This book overviews the extensive literature on apparent cosmological and black hole horizons. In theoretical gravity, dynamical situations such as gravitational collapse, black hole evaporation, and black holes interacting with non-trivial environments, as well as the attempts to model gravitational waves occurring in highly dynamical astrophysical processes, require that the concept of event horizon be generalized. Inequivalent notions of horizon abound in the technical literature and are discussed in this manuscript. The book begins with a quick review of basic material in the first one and a half chapters, establishing a unified notation. Chapter 2 reminds the reader of the basic tools used in the analysis of horizons and reviews the various definitions of horizons appearing in the literature. Cosmological horizons are the playground in which one should take baby steps in understanding horizon physics. Chapter 3 analyzes cosmological horizons, their proposed thermodynamics, and several coordinate systems. The remaining chapters discuss analytical solutions of the field equations of General Relativity, scalar-tensor, and f(R) gravity which exhibit time-varying apparent horizons and horizons which appear and/or disappear in pairs. An extensive bibliography enriches the volume. The intended audience is master and PhD level students and researchers in theoretical physics with knowledge of standard gravity.
With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. |
You may like...
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
Leonhard Euler's Letters to a German…
Ronald S. Calinger, Ekaterina, …
Hardcover
R2,547
Discovery Miles 25 470
Astrophysics In The Xxi Century With…
Cesar Augusto Zen Vasconcellos, Fridolin Weber
Hardcover
R3,233
Discovery Miles 32 330
|