![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Understanding the formation and evolution of early galaxies is one of the most challenging problems in modern astronomy. In this volume leading specialists describe observations of high and intermediate redshift galaxies as well as the deep survey activities. Further topics include cosmology, and modelling and computer simulations of galaxy formation. Thus the reader will find here a fairly complete picture of the state of the art in this active field of astrophysics research.
Recent state-of-the-art technologies in fabricating low-loss optical and mechanical components have significantly motivated the study of quantum-limited measurements with optomechanical devices. Such research is the main subject of this thesis. In the first part, the author considers various approaches for surpassing the standard quantum limit for force measurements. In the second part, the author proposes different experimental protocols for using optomechanical interactions to explore quantum behaviors of macroscopic mechanical objects. Even though this thesis mostly focuses on large-scale laser interferometer gravitational-wave detectors and related experiments, the general approaches apply equally well for studying small-scale optomechanical devices. The author is the winner of the 2010 Thesis prize awarded by the Gravitational Wave International Committee.
This volume covers different aspects of recent theoretical and observational work on magnetic reconnection, a fundamental plasma-physical process by which energy stored in magnetic field is converted, often explosively, into heat and kinetic energy. This collection of papers from the fields of solar and space physics, astrophysics, and laboratory plasma physics is especially timely in view of NASA's upcoming Magnetospheric Multiscale mission, which will use Earth's magetosphere as a laboratory to test, through in-situ measurement of the plasma, energetic particles, and electric and magnetic fields, the various and sometimes competing models and theories of magnetic reconnection. This volume is aimed at researchers in solar physics, magnetospheric physics and plasma physics. Previously published in Space Science Reviews journal, Vol. 160/1-4, 2011.
8. 8 Boundary Layer Structure and Detached Plasma 305 8. 8. 1 Background 305 8. 8. 2 Structure inside the boundary layer 306 8. 8. 3 Observation of detached plasma 308 8. 8. 4 Summary 309 8. 9 Summary and Conclusions 310 References 312 9. CLUSTER AT THE MAGNETOSPHERIC CUSPS 321 9. 1 Introduction 321 9. 1. 1 Previous work 323 9. 1. 2 How Cluster investigates the cusp 325 9. 2 The High-Altitude Cusp 326 9. 2. 1 March 17, 2001 328 9. 2. 2 February 4, 2001 332 9. 2. 3 February 13, 2001 337 9. 2. 4 Statistical survey 340 9. 2. 5 Waves and turbulence 343 9. 3 The Mid-Altitude Cusp 352 9. 3. 1 Structure: Case study 352 9. 3. 2 Structure: Statistical survey 354 9. 3. 3 Ionospheric ions 354 9. 3. 4 Mid-altitude signatures of the LLBL 357 9. 4 Discussion 359 References 360 10. MAGNETOPAUSE PROCESSES 367 10. 1 Magnetopause Reconnection 368 10. 1. 1 Intermittent vs. quasi-steady reconnection 368 10. 1. 2 Component vs. anti-parallel reconnection 382 10. 1. 3 Tailward-of-the-cusp reconnection 385 10. 1. 4 Quantitative tests of reconnection occurrence 388 10. 1. 5 Summary 391 10. 2 Kelvin-Helmholtz Instability at the Flank Magnetopause 391 10. 3 Microphysics of Magnetopause Processes 396 10. 3. 1 Collisionless generalised Ohm's law 397 10. 3. 2 Ion di?usion region observations 398 10. 3. 3 High-frequency waves 402 10. 3. 4 Lower-hybrid waves 405 10. 3.
The book is an up-to-date, concise presentation of the development of submillimeter-wave and far-infrared astrophysics. The topics range from the large-scale atomic and molecular distribution in the Galaxy and in external galaxies to the frontal properties of molecular clouds and the details of the star-formation process. A chapter on the most recent technical advances in the field illustrates the intimate connection and interplay between scientific advancement and technological capability. The book not only summarizes the advances in the field but also presents important background information, addressing experts and graduate students alike.
Based on the concept of a physical system, this book offers a new philosophical interpretation of classical mechanics and the Special Theory of Relativity. According to Belkind s view the role of physical theory is to describe the motions of the parts of a physical system in relation to the motions of the whole. This approach provides a new perspective into the foundations of physical theory, where motions of parts and wholes of physical systems are taken to be fundamental, prior to spacetime, material properties and laws of motion. He defends this claim with a constructive project, deriving basic aspects of classical theories from the motions of parts and wholes. This exciting project will challenge readers to reevaluate how they understand the structure of the physical world in which we live. "
Cosmology has dramatically evolved during the last decade and there has been vast development of, e.g., theories of galaxy formation in connection with the early universe or gravitational lensing. These new developments motivated the editors to organize a school covering all of these ideas and observations in a pedagogical way. The topics covered in the 26 lectures of this summer school include: QSO absorption systems, identification of objects at high redshift, radiogalaxies, galaxy formation and evolution, galaxy number counts, clustering, theories of structure formation, large-scale structure and streaming motions, gravitational lensing, and spectrum and anisotropies of the cosmic microwave background radiation. Observational developments, data analysis, and theoretical aspects are equally treated.
Astronomy and Astrophysics Abstracts aims to present a comprehensive documen- tation of the literature concerning all aspects of astronomy, astrophysies, and their border fields. It is devoted to the recording, summarizing, and indexing of the relevant publications throughout the world. Astronomy and Astrophysics Abstracts is prepared by a special department of the Astronomisches Rechen-Institut under the auspices of the International Astronomical Union. Volume 44 records literature published in 1987 and received before February 15, 1988. Some older documents which we received late and which are not surveyed in earlier volumes are inc1uded too. We acknowledge with thanks contributions of our colleagues all over the world. We also express our gratitude to all organiza- tions, observatories, and publishers which provide us with complimentary copies of their publications. Dr. Siegfried Bohme retired from his duties as co-editor of Astronomy and Astro- physics Abstracts on December 31, 1987. Since 1950 he partieipated in the biblio- graphie work of the institute. He served as a reviewer for the Astronomischer Jahresbericht and became one of the editors of Astronomy and Astrophysics Ab- stracts in 1969. After his retirement in 1975 he took care of, particularly, the Russian literature on a voluntary basis for 12 years. It is a pleasure to thank Siegfried Bohme for his valuable contributions. Starting with Volume 33, all the recording, correction, and data processing work was done by means of computers. The recording was done by our technical staff members Ms. Helga Ballmann, Ms. Christiane Jehn, Ms. Monika Kohl, Ms.
Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a fantastic new world that might well harbor life.
Devised for a quantitative understanding of the physics of the universe from the solar system through the milky way to clusters of galaxies all the way to cosmology, this acclaimed text offers among the most concise and most critical ones of extant works. Special chapters are devoted to magnetic and radiation processes, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed to for the precise interpretation of frontline phenomena.
This is the forth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II has been published as LNP 700, and Vol. III has been published as LNP 764.
This is the second ESO workshop in aseries dedicated to science oppor tunities with the VLT. At the first workshop all areas of astronomical research were discussed. This second workshop is dedicated to research projects on the early Universe and has provided a forum for discussing strategies for studying faint distant objects in the optical and infrared spectral regions. This field is evolving very rapidly. There are several new surveys of galax ies and clusters of galaxies at intermediate redshift and quasars at very high redshift. Major advances in the morphological studies of distant galaxies, surveys of galaxies at high redshift and searches for primeval galaxies have been rendered possible by the new facilities provided by the Rubble Space Telescope and the Keck Telescope. Observational constraints on the evolution and formation of galaxies and large-scale structures as well as the cosmic chemical evolution were criti cally discussed with regard to theory and numerical simulations. In this context, the VLT first generation instrument capabilities were presented comprehensively and their use as cosmological tools discussed . The concluding remarks of the workshop focussed on the analysis of var ious possibilities for the VLT second generation instrumentation. Many of these topics were covered by invited reviews and talks, as well as some contributed talks. They are included in this volume together with the poster papers.
This volume gives and excellent survey of our present knowledge of molecularprocesses in stellar and proto-stellar objects. It reviews molecular physicsin stellar environments and is intended to bridge the gap between astrophysicists and chemists. The topics range from the theoretical to the computational and include observational data. Among the topics treated are questions of stellar evolution, the determination of physical propertiesand structures , and the chemical composition of stellar protospheres. Opacity is studied in the context of various types of stellar and proto-stellar objects.
Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the averagetime interval between the date of receipt of the original literature and publication ofthe abstracts will not exceed eight months. This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. Volume 17 contains literature published in 1976 and received before August 15, 1976; some older literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. Bouska, who surveyed journals and publications in the Czech languageand supplied us with abstracts in English, and by the Common wealth Scientific and Industrial Research Organization (C.S.I.R.O.), Sydney, for providing titles and abstracts of papers on radio astronomy. We want to acknowledge valuable contributions to this vol ume by Zentralstelle fur Atomkernenergie-Dokumentation, Leopoldshafen, which supported our ab stracting service by sending us retrospective literature searches."
Recent research on the solar-stellar system has been triggered by a host of recent observational data, in particular from space based observations. For this conference the major topics selected centered on new measurement capabilities (magnetic fields and infrared, with specific emphasis on the new IRAS results), important classes of stars (F stars, M dwarfs and giants, and pre-main sequence stars), and interesting unanswered questions (the nature of nonthermal phenomena, heating processes, angular momentum evolution, and the existence and cause of the corona/wind dividing line). Each section is opened by two or more invited lectures aimed at a wide audience, including graduate students, and continues with some research papers. The proceedings also record the two general discussions on the role of magnetic fields in cool star atmospheres and the role of monitoring programs for studies of cool stars (see also Lecture Notes in Physics Vol. 292).
This is an exhaustive survey of present-day solar research including both theory and observations. It deals with eruptive flares, filament eruption in x-rays and radio waves, energy release and transport, and terrestrial response to solar flares. Details of the most recent SOLAR-A project (launched shortly after the conference) are also presented.
The study of the magnetic fields of the Earth and Sun, as well as those of other planets, stars, and galaxies, has a long history and a rich and varied literature, including in recent years a number of review articles and books dedicated to the dynamo theories of these fields. Against this background of work, some explanation of the scope and purpose of the present monograph, and of the presentation and organization of the material, is therefore needed. Dynamo theory offers an explanation of natural magnetism as a phenomenon of magnetohydrodynamics (MHD), the dynamics governing the evolution and interaction of motions of an electrically conducting fluid and electromagnetic fields. A natural starting point for a dynamo theory assumes the fluid motion to be a given vector field, without regard for the origin of the forces which drive it. The resulting kinematic dynamo theory is, in the non-relativistic case, a linear advection-diffusion problem for the magnetic field. This kinematic theory, while far simpler than its magnetohydrodynamic counterpart, remains a formidable analytical problem since the interesting solutions lack the easiest symmetries. Much ofthe research has focused on the simplest acceptable flows and especially on cases where the smoothing effect of diffusion can be exploited. A close analog is the advection and diffusion of a scalar field by laminar flows, the diffusion being measured by an appropriate Peclet number. This work has succeeded in establishing dynamo action as an attractive candidate for astrophysical magnetism.
ESO's new and exciting telescope, the VLT in Chile, will certainly bring a host of new results in optical astronomy for the years to come. This workshop surveys a large variety of possible observations and the needed instrumentation. It is an exciting overview of front research in astronomy rarely published before. The book covers the whole gamut of optical-IR astronomy from the solar system, search for planets in nearby stars, physics of galactic stars and clusters, galactic structure, structure of nearby galaxies, AGN and quasars, clusters of galaxies, to large structure and cosmology. Furthermore it summarizes the two panel discussions.
In this volume seven leading theoreticians and experimenters review the origin of the asymmetry of matter and antimatter in the Big Bang, solar neutrinos, the physics of enormous densities and temperatures in stars and of immense magnetic fields around collapsed stars, strong electric fields in heavy ion collisions, and the extreme conditions in quark-gluon plasmas. The articles address nuclear and particle physicists, especially graduate students, but also astrophysicists and cosmologists, since they have to deal with events under the extreme physical conditions discussed here.
The articles collected in this volume cover topics ranging from Planck-scale physics to galaxy clustering. They deal with various new ideas from cosmology, astrophysics and particle physics that might lead to a better understanding of our physical universe. Among the topics covered are inflationary models, nucleosynthesis, dark matter, large-scale clustering, cosmic microwave background radiations and more. The book addresses researchers but it also gives a good overview of the subject for graduate students in astrophysics and particle physics.
The outstanding question in astronomy at the turn of the twentieth century was: What are the stars and why are they as they are? In this volume, the story of how the answer to this fundamental question was unravelled is narrated in an informal style, with emphasis on the underlying physics. Although the foundations of astrophysics were laid down by 1870, and the edifice was sufficiently built up by 1920, the definitive proof of many of the prescient conjectures made in the 1920s and 1930s came to be established less than ten years ago. This book discusses these recent developments in the context of discussing the nature of the stars, their stability and the source of the energy they radiate. Reading this book will get young students excited about the presently unfolding revolution in astronomy and the challenges that await them in the world of physics, engineering and technology. General readers will also find the book appealing for its highly accessible narrative of the physics of stars. ... "The readers will find Dr Srinivasan, an internationally acclaimed leader in this enterprise, to be a clear and enthusiastic guide to the wonders and mysteries of the cosmos." Lord Martin Rees Astronomer Royal Master of Trinity College, Cambridge "I know of no comparable book in the present-day literature that so successfully conveys ""the excitement of the development of ideas pertaining to the physics of stars, including the newest discoveries, and at the same time explains the fundamentals so well. " "" E. P. J. van den Heuvel Professor of Astrophysics Winner of the Spinoza and Descartes Prizes University of Amsterdam, The Netherlands "
For some time to come, this book should be the main source for research in prominences. It surveys the results of the past years, including the "Hvar Reference Atmosphere", which was developed by a panel as a model for quiescent prominences. The reader will find papers on the formation of and physical conditions in prominences, on magnetic fields, on mass motion and energy flow, and on the prominence-corona interface.
The rapid growth in our understanding of how stars form owes a lot to recent developments in techniques for carrying out infrared and millimeter-wave astronomy. Thus Star Formation and Techniques in mm-Wave Astronomy were natural joint themes for the Fifth EADN Predoctoral Astrophysics School held at the Technische Universitat Berlin. The lecture courses by six world-class experts are aimed at postgraduate students and scientists with a non-specialist interest in the field. Topics include molecular clouds, T Tauri stars, OB stars, observation methods in infrared and mm astronomy, as well as high resolution techniques.
This is a definitive reference of 2,100 fundamental formulae used in astronomy and astrophysics. It not only makes accessible all the indispensable equations employed in the field, but also carefully explains the physical assumptions and constants underlying them. The bibliography contains more than 1,900 citations of original papers. Accounting for nearly 20 years since the previous edition, this volume is significantly revised and expanded.
The book reviews the knowledge obtained from ground-based and space-borne solar flare research thus at the same time preparing for the forthcoming mission of the satellite Solar A which will be launched in 1991. Accordinglyone section is devoted to experiments on Solar A. The rest review both theory and observational facts to give a physically realistic picture of flares, including problems of magnetic flux emergence, high energy particles in flares, heating and flows in flares, and further problems of solar activity. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
Dialogues Concerning Two New Sciences…
Galileo Galilei, Alfonso De Salvio, …
Hardcover
R761
Discovery Miles 7 610
Advances in the Physics of Stars - in…
Nazar R Ikhsanov, Galina L Klimchitskaya, …
Hardcover
|