![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The ENAM2001 Conference was held on July 2-7, 2001 at the Rantasipi Aulanko Hotel in Hameenlinna in southern Finland. The conference was organized by the Department of Physics and the Accelerator Laboratory of the University of Jyvaskyla with support from the Physics Departments of the Universities of Helsinki and Turku. This conference, Exotic Nuclei and Atomic Masses has now gained the status of a major nuclear physics serial conference. The previous conference was held in Bellaire, Michigan, USA. The conference was first held in 1967 in Lysekil, Sweden, then entitled Conference on Nuclei Far from Stability. ENAM2001 welcomed 270 participants from 34 countries, including 17 accompanying per sons. The content of the program was selected based on the advice of the International Advisory Committee. The Committee members read and considered 253 submitted abstracts in selecting oral contributions. During the conference week 76 invited and oral talks were given. The rest of the contributions were presented in dedicated poster sessions. Many thanks go to the speakers of oral and poster presentations for their enthusiasm and for the high quality of their work which demonstrated the liveliness of the field. Participation in the lectures was high and contributions from the audience were important towards the success of this conference. The organizers would like to especially thank Cary Davids of Argonne National Laboratory for his comprehensive summary talk, which is also included in these Proceedings.
This volume brings together theoretical ideas on the plasma physics of both hot and dense plasmas in the solar atmosphere and similar physics applied to the tenuous and cooler plasmas found in the heliosphere. It is complemented by recent observations. Helioseismology covers the solar interior and the neutrino problem. Solar and stellar activity cycles are addressed. The dynamics of magnetic flux tubes in the solar atmosphere and material flows through the chromosphere into the upper atmosphere are comprehensively reviewed. Energy release processes and the production of energetic particles are important to understanding events in the solar atmosphere and to the dynamics of the tenuous heliosphere. A glimpse of the future is offered by concluding chapters on new ground-based and space instrumentation.
This is an exhaustive survey of present-day solar research including both theory and observations. It deals with eruptive flares, filament eruption in x-rays and radio waves, energy release and transport, and terrestrial response to solar flares. Details of the most recent SOLAR-A project (launched shortly after the conference) are also presented.
This volume gives and excellent survey of our present knowledge of molecularprocesses in stellar and proto-stellar objects. It reviews molecular physicsin stellar environments and is intended to bridge the gap between astrophysicists and chemists. The topics range from the theoretical to the computational and include observational data. Among the topics treated are questions of stellar evolution, the determination of physical propertiesand structures , and the chemical composition of stellar protospheres. Opacity is studied in the context of various types of stellar and proto-stellar objects.
This volume provides an overview of our current understanding of the physics related to: coronal structures and coronal heating; large-scale coronal shock waves and coronal mass ejections; particle beams in the solar corona and in the interplanetary medium; and explosive energy-release phenomena and particle acceleration. The different articles give a well-balanced presentation of relevant observations based upon various techniques, models and theories, providing a global view of these phenomena and of the underlying physics. In-situ measurements of particles and waves with ULYSSES and WIND and spectral and imaging data from SOHO and YOHKOH provide an unprecedented richness of relevant data. For their better understanding, radio observations - also included in this book - play a key role.
The study of the magnetic fields of the Earth and Sun, as well as those of other planets, stars, and galaxies, has a long history and a rich and varied literature, including in recent years a number of review articles and books dedicated to the dynamo theories of these fields. Against this background of work, some explanation of the scope and purpose of the present monograph, and of the presentation and organization of the material, is therefore needed. Dynamo theory offers an explanation of natural magnetism as a phenomenon of magnetohydrodynamics (MHD), the dynamics governing the evolution and interaction of motions of an electrically conducting fluid and electromagnetic fields. A natural starting point for a dynamo theory assumes the fluid motion to be a given vector field, without regard for the origin of the forces which drive it. The resulting kinematic dynamo theory is, in the non-relativistic case, a linear advection-diffusion problem for the magnetic field. This kinematic theory, while far simpler than its magnetohydrodynamic counterpart, remains a formidable analytical problem since the interesting solutions lack the easiest symmetries. Much ofthe research has focused on the simplest acceptable flows and especially on cases where the smoothing effect of diffusion can be exploited. A close analog is the advection and diffusion of a scalar field by laminar flows, the diffusion being measured by an appropriate Peclet number. This work has succeeded in establishing dynamo action as an attractive candidate for astrophysical magnetism.
Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the averagetime interval between the date of receipt of the original literature and publication ofthe abstracts will not exceed eight months. This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. Volume 17 contains literature published in 1976 and received before August 15, 1976; some older literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. Bouska, who surveyed journals and publications in the Czech languageand supplied us with abstracts in English, and by the Common wealth Scientific and Industrial Research Organization (C.S.I.R.O.), Sydney, for providing titles and abstracts of papers on radio astronomy. We want to acknowledge valuable contributions to this vol ume by Zentralstelle fur Atomkernenergie-Dokumentation, Leopoldshafen, which supported our ab stracting service by sending us retrospective literature searches."
Recent research on the solar-stellar system has been triggered by a host of recent observational data, in particular from space based observations. For this conference the major topics selected centered on new measurement capabilities (magnetic fields and infrared, with specific emphasis on the new IRAS results), important classes of stars (F stars, M dwarfs and giants, and pre-main sequence stars), and interesting unanswered questions (the nature of nonthermal phenomena, heating processes, angular momentum evolution, and the existence and cause of the corona/wind dividing line). Each section is opened by two or more invited lectures aimed at a wide audience, including graduate students, and continues with some research papers. The proceedings also record the two general discussions on the role of magnetic fields in cool star atmospheres and the role of monitoring programs for studies of cool stars (see also Lecture Notes in Physics Vol. 292).
ESO's new and exciting telescope, the VLT in Chile, will certainly bring a host of new results in optical astronomy for the years to come. This workshop surveys a large variety of possible observations and the needed instrumentation. It is an exciting overview of front research in astronomy rarely published before. The book covers the whole gamut of optical-IR astronomy from the solar system, search for planets in nearby stars, physics of galactic stars and clusters, galactic structure, structure of nearby galaxies, AGN and quasars, clusters of galaxies, to large structure and cosmology. Furthermore it summarizes the two panel discussions.
In this volume seven leading theoreticians and experimenters review the origin of the asymmetry of matter and antimatter in the Big Bang, solar neutrinos, the physics of enormous densities and temperatures in stars and of immense magnetic fields around collapsed stars, strong electric fields in heavy ion collisions, and the extreme conditions in quark-gluon plasmas. The articles address nuclear and particle physicists, especially graduate students, but also astrophysicists and cosmologists, since they have to deal with events under the extreme physical conditions discussed here.
The articles collected in this volume cover topics ranging from Planck-scale physics to galaxy clustering. They deal with various new ideas from cosmology, astrophysics and particle physics that might lead to a better understanding of our physical universe. Among the topics covered are inflationary models, nucleosynthesis, dark matter, large-scale clustering, cosmic microwave background radiations and more. The book addresses researchers but it also gives a good overview of the subject for graduate students in astrophysics and particle physics.
This book contains the proceedings of a workshop held in Schloss Ringberg to assess developments in molecular cloud research over the last 25 years, and to discuss trends for future research in the field of molecular line astronomy. The topics include the morphology, formation, and lifetimes of molecular clouds, and their relation to star formation. Also, the chemical and isotopic content of these clouds is reviewed, and comparisons with molecular clouds in external galaxies are made. This rather complete survey of this important field of research addresses researchers in astronomy and students alike."
'A gripping exploration of one of the most fundamental, but also perplexing aspects of existence.' PROF. LEWIS DARTNELL, author of Origins 'Such an enjoyable read...full of delightful nuggets that you will want to impress your friends and family with.' PROF. JIM AL-KHALILI, NYT bestselling author of The World According to Physics 'This is a lovely, fascinating book. It blends history, geology, chemistry, philosophy and, of course, physics in a way that's delightful to read.' - ABIGAIL BEALL, author of The Art of Urban Astronomy -------- Discover the secrets of one of the biggest puzzles in our history - Time. As a subject, it has perplexed and fascinated generations of scientists, historians and more, and continues to spark the most intriguing questions being asked in science today. Can time be stopped? Is time travel possible? Does time even exist...? In these ten bite-sized essays, Colin Stuart delves into these big questions and uncovers the most awe-inspiring and revealing things we should all know about time. Perfect for readers of Carlo Rovelli and anyone fascinated by space and the universe, this is a must-read for those short on time, but not curiosity.
Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown mainly by performing scattering experiments with electrons, muons and neutrinos to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction. The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no end in sight for either theoretical or experimental developments as shown e.g. by the recent need to introduce more sophisticated three-body interactions to account for an improved picture of nuclear structure and reactions. Yet, it turns out that the internal structure of the nucleons has comparatively little influence on the behavior of the nucleons in nuclei and nuclear physics especially nuclear structure and reactions is thus a field of science in its own right, without much recourse to subnuclear degrees of freedom. This book collects essential material that was presented in the form of lectures notes in nuclear physics courses for graduate students at the University of Cologne. It follows the course's approach, conveying the subject matter by combining experimental facts and experimental methods and tools with basic theoretical knowledge. Emphasis is placed on the importance of spin and orbital angular momentum (leading e.g. to applications in energy research, such as fusion with polarized nuclei) and on the operational definition of observables in nuclear physics. The end-of-chapter problems serve above all to elucidate and detail physical ideas that could not be presented in full detail in the main text. Readers are assumed to have a working knowledge of quantum mechanics and a basic grasp of both non-relativistic and relativistic kinematics; the latter in particular is a prerequisite for interpreting nuclear reactions and the connections to particle and high-energy physics."
The outstanding question in astronomy at the turn of the twentieth century was: What are the stars and why are they as they are? In this volume, the story of how the answer to this fundamental question was unravelled is narrated in an informal style, with emphasis on the underlying physics. Although the foundations of astrophysics were laid down by 1870, and the edifice was sufficiently built up by 1920, the definitive proof of many of the prescient conjectures made in the 1920s and 1930s came to be established less than ten years ago. This book discusses these recent developments in the context of discussing the nature of the stars, their stability and the source of the energy they radiate. Reading this book will get young students excited about the presently unfolding revolution in astronomy and the challenges that await them in the world of physics, engineering and technology. General readers will also find the book appealing for its highly accessible narrative of the physics of stars. ... "The readers will find Dr Srinivasan, an internationally acclaimed leader in this enterprise, to be a clear and enthusiastic guide to the wonders and mysteries of the cosmos." Lord Martin Rees Astronomer Royal Master of Trinity College, Cambridge "I know of no comparable book in the present-day literature that so successfully conveys ""the excitement of the development of ideas pertaining to the physics of stars, including the newest discoveries, and at the same time explains the fundamentals so well. " "" E. P. J. van den Heuvel Professor of Astrophysics Winner of the Spinoza and Descartes Prizes University of Amsterdam, The Netherlands "
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
This book begins with a very readable survey "The Sun Today" by J.-C. Pecker. It is followed by thorough reviews from leading experts covering theory and observations. The focus shifts from the solar core, studied via neutrino emissions and helioseismology, through the interface regions where it is believed the large-scale magnetic fields are generated, to the corona, where most of the high temperature phenomena characteristic of this region may be studied directly. As energetic particles play such a vigorous role in this part of the sun, a separate session was devoted to their transport and storage in the corona.
This book addresses graduate students in astronomy and astrophysics. The first part is devoted to galactic high-energy astrophysics. It treats particle accelerations (including shocks), the interstellar medium and supernovae remnants, high-energy emissions from normal stars and accretion in close binaries. The second part deals with observationslike pulsar timing, and its measurement with radioastronomical tools, and astrometry, as performed in the HIPPARCOS satellite program.
The recent discovery of a type II supernova in the Large Magellanic Cloud provides a rare chance to compare models of stellar evolution and nucleosynthesis directly with observations. This workshop covers thermonuclear reaction rates in chaos (experimental and theoretical), stellar evolution, nucleosynthesis and isotopic anomalies in meteorites and, in a final section, the supernovae, in particular SN 1987A. It brings the most interesting news in the rapidly developing field of nuclear astrophysics to researchers and also to graduate students. Recent and future developments are discussed. Special emphasis is placed on experimental and theoretical approaches to obtaining nuclear reaction rates, models of stellar evolution and explosions, and theories of nucleosynthesis. Various aspects of stellar evolution, nucleosynthesis, and thermonuclear reactions of astrophysical interest are reviewed. Several contributions deal with supernova explosions of massive stars, and in particular with Supernova 1987A and its impact on current models of the evolution of massive stars, the gravitational collapse of stellar cores, and neutrino physics and astronomy.
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
The series Advances in the Physics of Particles and Nuclei
(APPN) is devoted to the archiving, in printed high-quality book
format, of the comprehensive, long shelf-life reviews published in
The European Physical Journal A and C. APPN will be of benefit in
particular to those librarians and research groups, who have chosen
to have only electronic access to these journals. Occasionally,
original material in review format and refereed by the series'
editorial board will also be This volume contains the following two reviews:
The volume consists of up-to-date reviews and a selection of contributed papers on subjects including the structure and physical properties of molecular clouds, their role in the star formation process, their dust and chemical properties, molecular cloud surveys of the Milky Way, cloud evolution, problems in cloud mass determinations (a panel discussion and review), the CO properties of external galaxies, nuclei of galaxies as revealed by molecular observations, and galactic spiral structure as reflected by molecular cloud distributions. The abstracts of poster papers on these topics presented at the conference are also included. This book is both a valuable reference and a compendium of current knowledge in this field. It should be of special interest to all students and researchers who work on the physics of star formation, the interstellar medium, molecular clouds and galactic structure.
This collection of articles emerged from the Nobel Symposium 98 that celebrated the centenary of the Nobel Prize as well as the one of the famous Swedish astronomer Bertil Lindblad. Many outstanding scientists contributed to this unique review of the state of the art in barred galaxy research. Theoretical papers describe their evolution, the dynamics as well as fundamental physical effects near their nuclei. Other contributions cover numerical and observational aspects and thus represent a very active area in astrophysics. The centre of our galaxy was also amply dealt with. The collection addresses researchers as well as graduate students.
Much progress has been made in recent years in understanding the complex physics of polarized radiation in the sun and stars. This physics includes vector radiative transfer and spectral line formation in the presence of magnetic fields, scattering theory and coherence effects, partial redistribution and turbulent magnetic fields, numerical techniques and Stokes inversion, as well as concepts for polarimetric imaging with a precision limited only by photon statistics. The present volume gives a comprehensive and up-to-date account of this rapidly evolving field of science.
Advances in the dynamics of stellar systems have been made recently by applying mathematical methods of ergodic theory and chaotic dynamics, by numerous computer simulations, and by observations with the most powerful telescopes. This has led to a considerable change of our view on stellar systems. These systems appear much more chaotic than was previously thought and subject to various instabilities leading to new paths of evolution than previously thought. The implications are fundamental for our views on the evolution of the galaxies and the universe. Such questions are addressed in this book, especially in the 8 review papers by leading experts on various aspects of the N-body problem, explaining at the graduate/postgraduate level the concepts, methods, techniques and results. |
![]() ![]() You may like...
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
|