![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Today many scientists recognize plasma as the key element in understanding new observations in interplanetary and interstellar space, in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Plasma astrophysics and cosmology, as a unified discipline, cover topics such as the large-scale structure and filamentation of the universe; the microwave background; the formation of galaxies and magnetic fields; active galactic nuclei and quasars; the origin and abundance of light elements; star formation and the evolution of solar systems; redshift periodicities and anomalous redshifts; general relativity; electric fields; the acceleration of charged particles to high energies; and cosmic rays. This text provides an update on the observations made in radio, optical and high-energy astrophysics, especially since 1985, and addresses the paradigm changing discoveries made by the planetary probes and satellites, radio telescopes, and the Hubble space telescope. Over 20 contributors, all distinguished plasma scientists, present a picture of the nature of our plasma universe with articles ranging from the popular level to advanced topics in plasma cosmology.
Unified Field Mechanics, the topic of the 9th international symposium honoring noted French mathematical physicist Jean-Pierre Vigier cannot be considered highly speculative as a myopic critic might surmise. The 8th Vigier Symposium proceedings 'The Physics of Reality' should in fact be touted as a companion volume because of its dramatic theoretical Field Mechanics in additional dimensionality. Many still consider the Planck-scale zero-point field stochastic quantum foam as the 'basement of reality'. This could only be considered true under the limitations of the Copenhagen interpretation of quantum theory. As we enter the next regime of Unified Field Mechanics we now know that the energy-dependent Einstein-Minkowski manifold called spacetime has a finite radius beyond which a large-scale multiverse beckons. So far a battery of 14 experiments has been designed to falsify the model. When the 1st is successfully performed, a revolution in Natural Science will occur! This volume strengthens and expands the theoretical and experimental basis for that immanent new age.
Using Cartan's differential 1-forms theory, and assuming that the motion variables depend on Euclidean invariants, certain dynamics of the material point and systems of material points are developed. Within such a frame, the Newtonian force as mass inertial interaction at the intragalactic scale, and the Hubble-type repulsive interaction at intergalactic distances, are developed.The wave-corpuscle duality implies movements on curves of constant informational energy, which implies both quantizations and dynamics of velocity limits.Analysis of motion of a charged particle in a combined field which is electromagnetic and with constant magnetism implies fractal trajectories. Mechanics of material points in a fractalic space is constructed, and various applications - fractal atom, potential well, free particle, etc. - are discussed.
Short Historical Overview In the 1940s, two phenomena in the ?eld of cosmic rays (CR) forced scientists to think that the Sun is a powerful source of high-energy particles. One of these was discovered because of the daily solar variation of CR, which the maximum number of CR observed near noon (referring to the existence of continuous ?ux of CR from the direction of the Sun); this became the experimental basis of the theory that CR's originate from the Sun (or, for that matter, from within the solar system) (Alfven 1954). The second phenomenon was discovered when large ?uxes of high energy particles were detected from several solar ?ares, or solar CR. These are the - called ground level events (GLE), and were ?rst observed by ionization chambers shielded by 10 cm Pb (and detected mainly from the secondary muon-component CR that they caused) during the events of the 28th of February 1942, the 7th of March 1942, the 25th of July 1946, and the 19th of November 1949. The biggest such event was detected on the 23rd of February 1956 (see the detailed description in Chapters X and XI of Dorman, M1957). The ?rst phenomenon was investigated in detail in Dorman (M1957), by ?rst correcting experimental data on muon temperature effects and then by using coupling functions to determine the change in particle energy caused by the solar-diurnal CR variation."
In the year 2015, 100 years after Fred Hoyle was born, the ideas relating to the cosmic origins of life are slowly gaining credence in scientific circles. Once regarded as outrageous heresy, evidence from a variety of disciplines - astronomy, geology, biology - is converging to support these once heretical ideas.This volume opens with recent review articles pointing incontrovertibly towards our cosmic heritage, followed by a collection of published articles tracing the development of the theory throughout the years. The discovery that microorganisms - bacteria and viruses - are incredibly resistant to the harshest conditions of space, along with the detection of an estimated 144 billion habitable planets around other star systems in our galaxy alone, makes it virtually impossible to maintain that life on one planet will not interact with life elsewhere. The emerging position is that life arose exceedingly rarely, possibly only once, in the history of the cosmos, but its subsequent spread was unstoppable. 'Panspermiology' can no longer be described as an eccentric doctrine, but rather is the only doctrine supported by an overwhelming body of evidence. Fred Hoyle's work in this area may in the fullness of time come to be regarded as his most important scientific contribution.
A History of Astronomy, first published in 1907, offers a comprehensive introduction to the steady development of the science since its inception in the ancient world up to the momentous progress of the nineteenth century. It includes biographical material relating to the most famous names in the study of astronomy - Copernicus, Galileo, Newton, Herschel - and their contributions, clear and accessible discussions of key discoveries, as well as detailing the incremental steps in technology with which many of the turning points in astronomy were intimately bound up.
A Broad Perspective on the Theory of General Relativity and Its Observable ImplicationsGeneral Relativity: Basics and Beyond familiarizes students and beginning researchers with the basic features of the theory of general relativity as well as some of its more advanced aspects. Employing the pedagogical style of a textbook, it includes essential ideas and just enough background material needed for readers to appreciate the issues and current research. BasicsThe first five chapters form the core of an introductory course on general relativity. The author traces Einstein's arguments and presents examples of space-times corresponding to different types of gravitational fields. He discusses the adaptation of dynamics in a Riemannian geometry framework, the Einstein equation and its elementary properties, and different phenomena predicted or influenced by general relativity. BeyondMoving on to more sophisticated features of general relativity, the book presents the physical requirements of a well-defined deterministic framework for non-gravitational dynamics and describes the characterization of asymptotic space-times. After covering black holes, gravitational waves, and cosmological space-times, the book examines the evolutionary interpretation for the class of globally hyperbolic space-times, explores numerical relativity, and discusses approaches that address the challenges of general relativity.
A major fraction of star formation in the universe occurs in starbursts. These regions of particularly rapid star formation are often located towards the centers of host galaxies. Studies of this kind of star formation at high redshift have produced astonishing results over recent years that were only possible with the latest generation of large ground-based and space telescopes. The papers collected in this volume present these results in the context of the much firmer foundation of star formation in the local universe, and they emphasize all the important topics, from star formation in different environments to the cosmic star formation history.
This book attempts to explain the core of physics, the origin of everything and anything. It explains why physics at the most fundamental level, and especially quantum mechanics, has moved away from naive realism towards abstraction, and how this means that we can begin to answer some of the most fundamental questions which trouble us all, about space, time, matter, etc. It provides an original approach based on symmetry which will be of interest to professionals as well as lay people.In the book, virtually no prior knowledge is assumed, but the readers are allowed to participate in a discussion of very deep ideas. Throughout the book, the readers are guided through some important ideas which need to be explained mathematically. The key fact is that the mathematics is not about calculation but about concepts. Much of it can be simplified using coloured text and diagrams. This means that ideas which are important to everyone who wants to know how the universe is structured are not glossed over as being too difficult for anybody but the experts.This book is written for a wide audience. Experts will gain a great deal, but so will lay readers. This would be an ideal book for students to read before progressing to another book by the author, The Foundations of Physical Law.
Measurements of solar irradiance, both bolometric and at various wavelengths, over the last two decades have established conclusively that the solar energy flux varies on a wide range of time scales, from minutes to the 11-year solar cycle. The major question is how the solar variability influences the terrestrial climate. The Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) is an international research program operating under the auspices of the Solar-Terrestrial Energy Program (STEP) Working Group 1: The Sun as a Source of Energy and Disturbances'. STEP is sponsored by the Scientific Committee of Solar-Terrestrial Physics (SCOSTEP) of the International Council of Scientific Unions (ICSU). The main goal of the SOLERS22 1996 Workshop was to bring the international research community together to review the most recent results obtained from observations, theoretical interpretation, empirical and physical models of the variations in the solar energy flux and their possible impact on climate studies. These questions are essential for researchers and graduate students in solar-terrestrial physics.
This book attempts to explain the core of physics, the origin of everything and anything. It explains why physics at the most fundamental level, and especially quantum mechanics, has moved away from naive realism towards abstraction, and how this means that we can begin to answer some of the most fundamental questions which trouble us all, about space, time, matter, etc. It provides an original approach based on symmetry which will be of interest to professionals as well as lay people.In the book, virtually no prior knowledge is assumed, but the readers are allowed to participate in a discussion of very deep ideas. Throughout the book, the readers are guided through some important ideas which need to be explained mathematically. The key fact is that the mathematics is not about calculation but about concepts. Much of it can be simplified using coloured text and diagrams. This means that ideas which are important to everyone who wants to know how the universe is structured are not glossed over as being too difficult for anybody but the experts.This book is written for a wide audience. Experts will gain a great deal, but so will lay readers. This would be an ideal book for students to read before progressing to another book by the author, The Foundations of Physical Law.
This book introduces the current state of research on dark energy. It consists of three parts. The first part is for preliminary knowledge, including general relativity, modern cosmology, etc. The second part reviews major theoretical ideas and models of dark energy. The third part reviews some observational and numerical works. The aim of this book is to provide a sufficient level of understanding of dark energy problems, so that the reader can both get familiar with this area quickly and also be prepared to tackle the scientific literature on this subject. It will be useful for graduate students and researchers who are interested in dark energy.
This book provides an accessible introduction to the fascinating and topical subject of black holes. It bridges the gap between popular non-mathematical expositions and advanced research texts, using simple undergraduate level calculations and the most basic knowledge of relativity to explain current research. This means the theory can be understood by a wide audience of physicists, including those who are not necessarily interested in learning higher-level mathematical techniques.The third edition links more of the current research trends to fundamental aspects of the physics of black holes. Additionally: This new edition introduces a chapter dedicated to a selection of recent results. Existing chapters have been updated and new explanatory material has been added to aid in the understanding of the physics.This book is recommended reading for advanced undergraduate students and first-year postgraduates who will find it a useful stepping-stone to the advanced literature.
This book provides an accessible introduction to the fascinating and topical subject of black holes. It bridges the gap between popular non-mathematical expositions and advanced research texts, using simple undergraduate level calculations and the most basic knowledge of relativity to explain current research. This means the theory can be understood by a wide audience of physicists, including those who are not necessarily interested in learning higher-level mathematical techniques.The third edition links more of the current research trends to fundamental aspects of the physics of black holes. Additionally: This new edition introduces a chapter dedicated to a selection of recent results. Existing chapters have been updated and new explanatory material has been added to aid in the understanding of the physics.This book is recommended reading for advanced undergraduate students and first-year postgraduates who will find it a useful stepping-stone to the advanced literature.
Most galaxies are in clusters, where tidal interactions are not uncommon. Tidal and dynamical interaction in galaxies are of importance in studying evolution. A large amount of data has been collected on dust-lane ellipticals, polar ring galaxies, spirals with extended warps, and galaxies with inclined HI rings or unusual 'tails'. This book is a record of a meeting which was held at the University of Pittsburgh. It provided an informal, yet focused environment for the interaction of astronomers who have addressed these questions with a wide variety of skills, techniques and points of view.
Stacy Palen knows that introductory astronomy may be the only science course some students take in their college careers, so it's their best chance to develop scientific literacy. Education research shows that the best way to attain scientific literacy is through active learning. Understanding Our Universe, Fourth Edition makes it easier for instructors to help students understand the concepts and learn to value science by providing activities that can be used before, during, and after class. By expanding her pedagogy to include What If scenarios and What an Astronomer Sees figure captions, Stacy helps students build scientific literacy and to think critically about science in the media.
The successful launch on November 17, 1995 of ESA's Infrared Space Observatory (ISO) by means of an Ariane 4 carrier, has set in motion a true revolution in quantitative infrared astronomy. For the first time since the very successful IRAS mission in 1983, the astronomical community has uninterrupted access to the infrared part of the electromagnetic spectrum. The four focal plane instruments on board of ISO ( the camera ISOCAM, the photometerjcamera ISOPHOT, and the short and long wavelength spec trographs ISO-SWS and ISO-LWS), perform very well and live up to the high expectations all of us had at launch. In the spring of 1996, Thijs de Graauw (principal investigator of the SWS) first suggested the idea to organize a conference dedicated to ISO re sults in the area of stars and circumstellar matter, and coined the title ISO 's View on Stellar Evolution. At the first scientific meeting to highlight some of the early ISO results which was held in May of 1996 at ESA's laboratory ESTEC in Noordwijk, the Netherlands, the conference was announced and a preliminary science organizing committee was formed. The conference was held from July 1 to 4, 1997, in conference centre de Leeuwenhorst, Noord wijkerhout, the Netherlands. The conference was opened by the Director of ESA 's Science Programme, Professor R. Bonnet."
The fundamental and very important property of inertia has never been well understood. This book shows how inertia has puzzled many scientists such as Galileo and Mach, and then presents a new theory that explains inertia for the first time, and also predicts galaxy rotation without dark matter, cosmic acceleration and some other anomalies. Further evidence for, and tests of, the theory are presented and exciting applications such as new inertial launch methods and the theoretical possibility of faster than light travel will be discussed. To allow readers to use the theory themselves, some simple maths is included, and to help explain the points made, there are numerous cartoons by the author.
Accretion disks are ubiquitous in our universe, and produce intense brightening. How does the gas in the disk lose its angular momentum to release massive amounts of gravitational energy? This is one of the biggest open questions in astronomy. This book studies four types of newly detected outbursts in dwarf novae through optical observations and/or numerical simulations and puts forward physical interpretations of these outbursts on the basis of the disk instability model, the most plausible model for dwarf-nova outbursts. It demonstrates that the disk-instability model can explain rich variety in dwarf-nova outbursts if some new aspects are taken into account (e.g. the extremely slow growth of tidal instability and thermal instability in the disk misaligned against the binary orbital plane). Moreover, it shares valuable insights on the evolution of binary systems by finding period bouncers and dwarf novae with F-type companion stars, which are rare objects.
"Fundamental Astronomy and Solar System Dynamics," a program of invited papers honoring Professor Walter Fricke, who for thirty years has been Director of the Astronomisches Rechen lnstitut in Heidelberg, was held at the Thompson Conference Center of the University of Texas at Austin on Wednesday 27 March 1985 on the occasion of his seventieth birthday and retirement as Director of ARl. Professor Fricke's contributions to astronomy encompass the areas of galactic dynamics, radial velocities, stellar statistics. the fundamental reference system and the constant of precession. Participants were welcomed to the Uni versi ty of Texas by Professor J. Parker Lamb, Chairman of the Department of Aerospace Engineering and Engineering Mechanics. The presentations ranged from discussions of astrometric problems concerned with the reference system, the constant of precession, major and minor planet observations, planetary ephemerides and lunar and satellite laser ranging, to a study of disc galaxies in massive halos. The program concluded with a review of Professor Fricke's career. The three sessions were chaired by Victor G. Szebehely, Carol A. Williams and Jay H. Lieske. The participants in this meeting, and in the Division on Dynamical Astronomy meeting that followed, were happy that Professor Fricke was able to attend. His presence at these meetings, as well as his thoughtful comments, were greatly appreciated. We are pleased to acknowledge the support of the Center for Space Research, the Department of Astronomy and the Department of Aerospace Engineering and Engineering Mechanics of the University of Texas at Austin.
B. G. Marsden Harvard-Smithsonian Center for Astrophysics Cambridge, MA 02138, U.S.A. !AU Symposium No. 81, "Dynamics of the Solar System", was held at the Hydrographic Office, Tokyo, Japan, during 23-26 May 1978. The Sym- posium was cosponsored by COSPAR and IUTAM, and generous financial sup- port was also provided by the Japan Society for the Promotion of Science. !AU sponsorship was through Commissions 4, 7 and 20, and the Scientific Organizing Committee consisted of the current Presidents, Vice Presi- dents and immediate Past Presidents of these Commissions: V. K. Abalakin, R. L. Duncombe, Y. Kozai, L. Kresak, B. G. Marsden (Chairman), P. J. Message, A. M. Sinzi, G. Sitarski and V. G. Szebehely. There were 64 participants from 15 countries, and 55 invited and contributed papers were read. The papers covered all branches of re- search on solar-system dynamics, and the eight sessions (chaired by Y. Kozai, V. G. Szebehely, W. Fricke, A. M. Sinzi, G. Sitarski, B. G.
Dark Matter: An Introduction tackles the rather recent but fast-growing subject of astroparticle physics, encompassing three main areas of fundamental physics: cosmology, particle physics, and astrophysics. Accordingly, the book discusses symmetries, conservation laws, relativity, and cosmological parameters and measurements, as well as the astrophysical behaviors of galaxies and galaxy clusters that indicate the presence of dark matter and the possible nature of dark matter distribution. This succinct yet comprehensive volume: Addresses all aspects essential to the study of dark matter Explores particle candidates for cold dark matter beyond the theory of the standard model, providing examples of basic extensions and introducing theories such as supersymmetry and extra dimensions Explains-in simple text and mathematical formulations-calculation of the freeze-out temperature of a dark matter species and its relic density Provides theoretical background for dark matter scattering off a target, event rate calculation, and dark matter annihilation essential to study direct and indirect detection of dark matter Complete with a detailed review of the latest dark matter experiments and techniques, Dark Matter: An Introduction is an ideal text for beginning researchers in the field as well as for general readers with an inquisitive mind, as the important topic of astroparticle physics is treated both pedagogically and with deeper insight.
Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a fantastic new world that might well harbor life.
A History of Astronomy, first published in 1907, offers a comprehensive introduction to the steady development of the science since its inception in the ancient world up to the momentous progress of the nineteenth century. It includes biographical material relating to the most famous names in the study of astronomy - Copernicus, Galileo, Newton, Herschel - and their contributions, clear and accessible discussions of key discoveries, as well as detailing the incremental steps in technology with which many of the turning points in astronomy were intimately bound up.
The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from this book. Adults interested in topics like dark energy and the Higgs boson, which are in the news, can make use of this book as well. |
You may like...
Spectroscopic Methods in the Study of…
Jacob (Theo) Kloprogge
Hardcover
R2,721
Discovery Miles 27 210
Harry Potter: A Pop-Up Guide To Hogwarts
Matthew Reinhart
Hardcover
Molecular Symmetry, Super-Rotation, and…
Hanno Schmiedt
Hardcover
Multibody Dynamics 2019 - Proceedings of…
Andres Kecskemethy, Francisco Geu Flores
Hardcover
R5,242
Discovery Miles 52 420
Photophysics of Ionic Biochromophores
Steen Brondsted Nielsen, Jean Ann Wyer
Hardcover
R3,341
Discovery Miles 33 410
Photoacoustic and Photothermal…
Surya N. Thakur, Virendra N. Rai, …
Paperback
R4,417
Discovery Miles 44 170
|