![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The Workshop "Optical Detectors for Astronomy" was held during October 8-10, 1996 at the headquarters of the European Southern Observatory in Garching, Germany. This was the third meeting of its kind, previous meetings being held in 1991 and 1993, but this is the first ESO "CCD Workshop" that has published proceedings. Most of the leading manufacturers and major astronomical observatories were represented, with the 117 attendees coming together from 14 different countries that spanned every continent on Earth. The motivation for the ESO CCD Workshop series is the creation of informal and open venue of information exchange about astronomical CCD detectors and systems. Judging from the reaction and feedback of the participants, the 1996 workshop was as successful as the previous editions, which is a credit to all who attended. The Workshop was organized as a mixture of invited talks, oral presentations, poster sessions and roundtable discussions, the latter used to foster a free exchange of ideas among participants. These technical sessions were complemented by an opening reception and a congenial evening in downtown Munich, which included a walking tour of the historic area followed by dinner at the famous Franziskaner brewery and an after dinner talk by Walter Kosonocky, who reviewed the history of CCD technology.
The idea of this Colloquium came during the XVIIth General Assembly of the I. A. U. at Montreal. The meeting was organized under the auspices of I. A. U. Commission 5 (Documentation and Astronomical Data). The Scientific Organizing Committee consisted of C. Jaschek (chairperson), O. Dluzhnevskaya, B. Hauck (vice chairperson), W. Heintz, P. Lantos, Th. Lederle, J. Mead~ G. Ruben, Y. Terashita, G. Wilkins. The members of this Committee are to be thanked for their devotion to the organization of what turned out to be a very successful meeting. The program was organized so as to cover most of the aspects concerning work with machine readable data. In a certain sense it is the develop ment of the subjects of I. A. U. Colloquium 35 "Compilation, critical evaluation and distribution of stellar data" held at Strasbourg in 1976. The meeting was opened by welcoming addresses delivered by Dr A. Florsch, Director of the Strasbourg Observatory, Prof. H. Curien, President of the European Science Foundation and Prof. W. Heintz, President of I. A. U. Commission 5. The sessions were devoted to the fol lowing subjects : Existing data centers, Data networks, New hardware, Recent software developments, Bibliographical services, Copyright, Editorial policies and nomenclature, Data in astronomy and Data in space astronomy. The different sessions were chaired by G. A. Pilkins, J. Mead, S. Lavrov, W. Heintz, P. Lantos, M. McCarthy, J. Delhaye and G. Westerhout. On July 9. Dr A.
In the past decade, indirect (Doppler) imaging techniques have opened up a whole new discipline in stellar astronomy, providing increasingly detailed photometric, magnetic, and chemical inhomogeneity images of stellar surfaces. Furthermore, new optical interferometers are already being used with sophisticated interferometer techniques to image stellar surface structures more directly, and in the future the ESO VLT Interferometer and other instruments will extend these capabilities enormously. These developments are highlighted in the first two sections of this book. The large number of recent results, ground-based and space-based, and the lack of a generally accepted dynamo theory with predictive power for the stars and the Sun, result in an ever-growing complexity of interpretation of individual results. The IAU Symposium 176 on Stellar Surface Structure' consequently focused on spatially resolved stellar observations throughout the H-R diagram, from O- and B-stars to late M-stars. Two further sections in this book summarize the current observational data on surface inhomogeneities in stellar photospheres, chromospheres, and coronae. Finally, a special section is devoted to next generation model atmospheres.
ROSAT Observations G. HASINGER Max-Planck-Institut flir extraterrestrische Physik, D-85740 Garching, Germany Abstract. This review describes the most recent advances in the study of the extragalactic soft X-ray background and what we can learn about its constituents. The deepest pointed observations with the ROSAT PSPC are discussed. The logN-logS relation is presented, which reaches to the faintest X-ray fluxes and to the highest AGN surface densities ever achieved. The N(>S) relation shows a 2 density in excess of 400 deg- at the faintest fluxes and a flattening below the Einstein Deep Survey limit. About 60% of the extragalactic background has been resolved in the deepest field. Detailed source spectra and first optical and radio identifications will be discussed. The results are put into perspective of the higher energy X -ray background. Key words: X-rays, background radiations, active galactic nuclei. 1. Introduction The extragalactic X-ray background (XRB), discovered about 30 years ago, has been studied extensively with many X-ray experiments, in particular with the satel lites HEAO I and II (see ego Boldt 1987) and with ROSAT (e. g. Hasinger et aI. , 1993). Figure 1 shows a compilation of some of the most recent spectral measure ments for the X-ray background. Over the energy range from 3 to about 100 keY its spectrum can be well approximated by an optically thin thermal bremsstrahlung model with kT ~ 40 keY, while at lower X-ray energies a steepening into a new component has been observed observed (e. g.
The study of the fine structure of solar radio emissions is key to understanding plasma processes in the solar corona. It remains a reliable means for both diagnosing the corona and verifying the results of laboratory plasma experiments on wave-wave and wave-particle interactions. This monograph provides a comprehensive review of the fine structure of solar radio bursts. Based on the diversity of experimental data resulting from the progress made in observational techniques, the validity of various theoretical models is reexamined. The book serves as an up-to-date reference work for all researchers in this field.
This book with its clear explanation of the nature of the universe assumes no prior knowledge of astronomy or cosmology and so will attract interested public and new amateur astronomers.It provides much more on large-scale structures than other popular-level cosmology books. The mix of cosmology /large scale structures/anthropic principle and perspective on the universe should, as far as the author knows, be unique. A special colour feature incorporated in the book will offer three-dimensional views of the surrounding universe to ever greater depths.
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces
Line intensity mapping (LIM) is an observational technique that probes the large-scale structure of the Universe by collecting light from a wide field of the sky. This book demonstrates a novel analysis method for LIM using machine learning (ML) technologies. The author develops a conditional generative adversarial network that separates designated emission signals from sources at different epochs. It thus provides, for the first time, an efficient way to extract signals from LIM data with foreground noise. The method is complementary to conventional statistical methods such as cross-correlation analysis. When applied to three-dimensional LIM data with wavelength information, high reproducibility is achieved under realistic conditions. The book further investigates how the trained machine extracts the signals, and discusses the limitation of the ML methods. Lastly an application of the LIM data to a study of cosmic reionization is presented. This book benefits students and researchers who are interested in using machine learning to multi-dimensional data not only in astronomy but also in general applications.
High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.
A monograph on inflationary cosmology and cosmological phase transitions, investigating modern cosmology's relationship to elementary particle physics. This work also includes a non-technical discussion of inflationary cosmology for those unfamiliar with the theory.
The publication of this book is extremely timely, for the next major advances in manned space flight after Project Apollo will most likely be made in earth orbital operations. Manned exploration of the moon will certainly continue after the initial landing, but it will be performed essentially with the Saturn V launch vehicles and Apollo spacecraft developed in Apollo, especially in the early phases. Modifications to this basic hardware will increase operating capabilities to permit extensive lunar explo ration during prolonged stay times by the astronauts on the moon's surface. Manned orbital space stations have been studied for years, and NASA is already well along in development of its first attempt to provide more spacious accommo dations for astronaut-scientists in its Saturn Workshop program. While the Workshop is certainly not the ultimate space station of which our technology is capable, it is a workable, poor man's approach to the immediate need for using and expanding our present manned space flight capability without a de trimentalloss of momentum. The approach of converting a Saturn rocket stage into a manned laboratory and observatory in space is an improvisation that matches the use of the jerry-built Jupiter C back in 1958 to launch Explorer I. Let's hope that it can get the job done just as effectively.
Bad Hofgastein who made the very successful Salzburger Abend with indi- nous music from Salzburg possible. Special thanks also to the former director of the Institute of Astronomy in Vienna, Prof. Paul Jackson for his generous private donation. We should not forget our hosts Mr. and Mrs. Winkler and their employees from the hotel who made the stay quite enjoyable. None of us will forget the very last evening, when the staff of kitchen under the le- ership of the cook himself came to offer us as farewell the famous Salzburger Nockerln, a traditional Austrian dessert. Everyone got a lot of scienti?c input during the lectures and the discussions and, to summarize, we all had a spl- did week in Salzburg in the Hotel Winkler. We all hope to come again in 2008 to discuss new results and new perspectives on a high level scienti?c standard in the Gasteinertal. Rudolf Dvorak and Sylvio Ferraz-Mello Celestial Mechanics and Dynamical Astronomy (2005) 92:1-18 (c) Springer 2005 DOI 10. 1007/s10569-005-3314-7 FROM ASTROMETRY TO CELESTIAL MECHANICS: ORBIT DETERMINATION WITH VERY SHORT ARCS (Heinrich K. Eichhorn Memorial Lecture) 1 2 ? ' ANDREA MILANI and ZORAN KNEZEVIC 1 Department of Mathematics, University of Pisa, via Buonarroti 2, 56127 Pisa, Italy, e-mail: milani@dm. unipi. it 2 Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia and Montenegro, e-mail: zoran@aob. bg. ac.
This book includes nine chapters written by internationally recognized experts, covering all aspects of millisecond pulsars in one concise and cohesive volume. These aspects include pulsations powered by stellar spin, accretion and thermonuclear burning of accreted matter, their physics and utility, stellar evolution and the extreme physics of super-dense stellar cores. The book includes substantial background material as well as recent theoretical and multi-wavelength observational results. The volume will thus be useful for professional astronomers and graduate students alike. What is the behavior of the strong nuclear interaction, and what are the matter constituents at ultrahigh densities in neutron star cores? How do old neutron stars in binaries evolve? How does their magnetosphere interact with the surrounding plasma to accelerate particles and emit radiation observed at all wavelengths? These are just a few of the questions that millisecond pulsars are helping us answer and will settle in the near future with the next generation of instruments. Such quickly rotating, highly magnetized neutron stars are remarkable natural laboratories that allow us to investigate the fundamental constituents of matter and their interactions under extreme conditions that cannot be reproduced in terrestrial laboratories.
The Theory Institute in Solar-Terrestrial Physics was held at Boston College 19-26 August 1982. The program consisted of a two-week School followed by the first theory conference in the field. This book is based upon the lectures presented at the School. Several years ago there was a convergence of efforts to promote the role of theory in space plasma physics. Reports from the National Academy of Sciences and NASA advisory committees documented the disciplinary maturity of solar-terrestrial physics and recommended that theorists play a greater role in the continued development of the field. The so-called theory program in solar-terrestrial physics was established by NASA in 1979 and implemented in accordance with the guidelines set forth by a panel of scientists, primarily theorists, in the field. The same panel motivated the Boston College program. Published proceedings of the school would provide curricular materials for the training of graduate students in solar-terrestrial physics. J.M. Forbes, T.E. Holzer, A.J. Hundhausen, A.D. Richmond, and G.L. Siscoe were the principal architects of the curriculum of the School, and I am grateful for their contributions. Each also lectured at the School. The chapters in this book were prepared by the authors themselves with one exception. The chapters by Parker are edited reproductions of his lectures. Unfortunately, it is our loss that the lectures of Holzer and Hundhausen are not included in the book.
The search for life outside the Earth has been one of the biggest quests of mankind. We have reached a level in technology that allows the first steps towards a scientific investigation. The aim of this workshop was to take an interdisciplinary look at the signatures that would be indicative for past or present life on another planet, to compare them to biosignatures on Earth, and to discuss state-of-the-art in-situ instruments that are envisioned to search for these signatures in the exploration of the solar system as well as concepts for the search for habitable planets around other stars.
This thesis sheds valuable new light on the second-order cosmological perturbation theory, extensively discussing it in the context of cosmic microwave background (CMB) fluctuations. It explores the observational consequences of the second-order vector mode, and addresses magnetic field generation and the weak lensing signatures, which are key phenomena of the vector mode. The author demonstrates that the second-order vector mode, which never appears at the linear-order level, naturally arises from the non-linear coupling of the first-order scalar modes. This leads to the remarkable statement that the vector-order mode clearly contributes to the generation of cosmological magnetic fields. Moreover, the weak lensing observations are shown to be accessible to the vector mode. On the basis of ongoing and forthcoming observations, the thesis concludes that the second-order vector mode is detectable.
The thesis tackles two distinct problems of great interest in gravitational mechanics - one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles. The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely in a geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits. The thesis is exceptional in the breadth of its scope and achievements. It is clearly and eloquently written, makes excellent use of images, provides careful explanations of the concepts and calculations, and it conveys the author's personality in a way that is rare in scientific writing, while never sacrificing academic rigor.
Proceedings of IAU Symposium No. 64, Warsaw, Poland, September 5-8, 1973
The symposium Star Clusters in the Era of Large Surveys was held in Lisbon on Sep 9-10 during the JENAM 2010. It served as a platform for discussing what and how recent, on-going and planned large-area ground-based and space-based surveys can contribute to producing a major leap in this research field, which has a strong European history. Scientific topics addressed included: cluster searches, clustered vs. isolated star formation, large-scale star formation, enrichment of the field population, structure, populations and evolution of the Milky Way, cluster dynamics (internal and within the Milky Way), variability of stars in clusters (from time-resolved surveys), analysis techniques for large samples and archiving. This proceedings book provides a snapshot of the ongoing discussion on the role of large surveys in star cluster research, and serves as a reference volume for the state-of-the art in the field.
Non-accelerator particle physicists, especially those studying neutrino oscillation experiments, will read with profit the in-depth discussions of new results and their interpretations. new guidelines are also set out for new developments in this and related fields. Discussions are presented of neutrino oscillations, neutrino astronomy, high energy cosmic rays, gravitational waves, magnetic monopoles and dark matter. The future large-scale research projects discussed include the experiments on long baseline neutrino beams from CERN to Gran Sasso and Fermilab to the Soudan mine; large underwater and under-ice experiments; the highest energy cosmic rays; gravitational waves; and the search for new particles and new phenomena.
Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.
A concise introduction to the greatest questions of modern cosmology. What came before the big bang? How will the universe evolve into the future? Will there be a big crunch? Questions like these have no definitive answers, but there are many contending theories. In A Little Book about the Big Bang, physicist and writer Tony Rothman guides expert and uninitiated readers alike through the most compelling mysteries surrounding the nature and origin of the universe. Cosmologists are busy these days, actively researching dark energy, dark matter, and quantum gravity, all at the foundation of our understanding of space, time, and the laws governing the universe. Enlisting thoughtful analogies and a step-by-step approach, Rothman breaks down what is known and what isn't and details the pioneering experimental techniques scientists are bringing to bear on riddles of nature at once utterly basic and stunningly complex. In Rothman's telling, modern cosmology proves to be an intricate web of theoretical predictions confirmed by exquisitely precise observations, all of which make the theory of the big bang one of the most solid edifices ever constructed in the history of science. At the same time, Rothman is careful to distinguish established physics from speculation, and in doing so highlights current controversies and avenues of future exploration. The idea of the big bang is now almost a century old, yet with each new year comes a fresh enigma. That is scientific progress in a nutshell: every groundbreaking discovery, every creative explanation, provokes new and more fundamental questions. Rothman takes stock of what we have learned and encourages readers to ponder the mysteries to come.
1. 1 Schematic Picture of AGN Some galaxies are known to emit radiation with extremely high luminosities from a rather small volume in the ??ray, X-ray and UV continuum. Such active cores are the so-called Active Galactic Nuclei (AGN) and the radiation is commonly believed to be a result of gravitational energy released by matter spiraling around 9 a supermassive central black hole of about 10 M (see Fig. 1). Though the central engine which produces the enormous observed activity cannot be resolved observationally, a standard picture of an AGN has gradually emerged to explain the richness of the radiation spectra: * an accretion disk with radius from about 2 to 100 gravitational radii, R , g feeding the central black hole and emitting mainly in the UV and soft X-rays; * the broad line optically emitting clouds (BLR), which seem to be absent in 3 some sources (e. g. FRI, see hereafter) and extend up to a few 10 R from g the center.
This thesis reports the discovery of relativistic stellar explosions outside of the gamma ray band, using optical time domain surveys. It is well known that some massive stars end their lives with the formation of a compact object (a neutron star or black hole) that launches a relativistic jet detectable from earth as a burst of gamma rays. It has long been suspected, however, that gamma ray bursts are only the tip of the iceberg in a broad landscape of relativistic explosions, and so the results presented in this thesis represent a major breakthrough. Highlights of this thesis include: characterization of the first major new class of relativistic explosions in a decade; the discovery of abrupt end-of-life mass-loss in a surprisingly diverse range of stars; and the routine discovery of afterglow emission and several events that may represent baryonically dirty jets or jets viewed slightly off axis. These discoveries necessitated the solution of difficult technical challenges such as the identification of rare and fleeting "needles" in a vast haystack of time-varying phenomena in the night sky, and responding to discoveries within hours to obtain data across the electromagnetic spectrum from X-rays to radio wavelengths. |
You may like...
12-Day Nativity - Christmas Activities…
Marilee Whiting Woodfield
Paperback
|