![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
This book presents a collection of focused review papers on the advances in topics in modern astronomy, astrophysics, cosmology and planetary science. The chapters are written by expert members of an EU-funded ERASMUS+ program of strategic partnership between several European institutes. The 13 reviews comprise the topics: Space debris, optical measurements Meteors, light from comets and asteroids Extrasolar enigmas: from disintegrating exoplanets to exo-asteroids Physical conditions and chemical abundances in photoionized nebulae from optical spectra Observational Constraints on the Common Envelope Phase A modern guide to quantitative spectroscopy of massive OB stars Explosion mechanisms of core-collapse supernovae and their observational signatures Low-mass and substellar eclipsing binaries in stellar clusters Globular cluster systems and Galaxy Formation Hot atmospheres of galaxies, groups, and clusters of galaxies The establishment of the Standard Cosmological Model through observations Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere Starburst galaxies The book is intended for the general astronomical community as well as for advanced students who could use it as a guideline, inspiration and overview for their future careers in astronomy.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years." Riccardo Giacconi Harvard/Smithsonian Center for Astrophysics The meeting of the High Energy Astrophysics Division of the American Astronomical Society, held in Cambridge, Massachusetts on January 28- 30, 1980, marks the coming of age of X-ray astronomy. In the 18 years since the discovery of the first extrasolar X-ray source, Sco X-l, the field has experienced an extremely rapid instrumentation development culminating with the launch on November 13, 1978 of the Einstein Ob servatory (HEAO-2) which first introduced the use of high resolution imaging telescopes to the study of galactic and extragalactic X-ray sources. The Einstein Observatory instruments can detect sources as faint as 10-7 Sco X-lor about 17 magnitudes fainter. The technological developments in the field have been paralleled by a host of new discoveries: in the early 1960's the detection of 9 "X-ray stars," objects 10 times more luminous in X-rays than the Sun and among the brightest stellar objects at all wavelengths; in the late 1960's and early 1970's the discovery of the nature of such systems which were identified as collapsed stars (neutron stars and black holes) in mass exchange binary systems, and the detection of the first few extragalactic sources."
This NATO AS was the third in the series of Advanced Study Institutes on neutron stars, which started with 'Timing Neutron Stars', held in Qe me near izmir, Turkey (April 1988), followed by 'Neutron Stars, an Interdis ciplinary Subject', held in Agia Pelagia on the island of Crete (September 1990). The first school centered on our main observational access to neu tron stars, i. e. the timing of radio pulsars and accretion powered neutron stars, and on what timing of neutron stars teaches us of their structure and environment. The second school had as its theme the interplay between diverse areas of physics which find interesting, even exotic applications in the extreme conditions of neutron stars and their magnetospheres. As the field has developed, with the number of observed neutron stars rapidly in creasing, and our knowledge of many individual neutron stars getting deeper and more detailed, an evolutionary picture of neutron stars has started to emerge. This led us to choose 'The Lives of the Neutron Stars' as the uni fying theme of this third Advanced Study Institute on neutron stars. Different types of neutron star activity have been proposed to follow one another in stages during the lives of neutron stars in the same basic population; the evolutionary connection between low-mass X-ray binaries and millisecond radio pulsars is perhaps the prime example."
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
Faster than light - Einstein's relativity is on its way down. It's a Newtonian universe once again.
These proceedings gather invited and contributed talks presented at the XXI DAE-BRNS High Energy Physics Symposium, which was held at the Indian Institute of Technology Guwahati in December 2014. The contributions cover many of the most active research areas in particle physics, namely (i) Electroweak Physics; (ii) QCD and Heavy Ion Physics; (iii) Heavy Flavour Physics and CP Violation; (iv) Neutrino Physics; (v) Astro-particle Physics and Cosmology; (vi) Formal Theory; (vii) Future Colliders and New Machines; and (viii) BSM Physics: SUSY, Extra Dimensions, Composites etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the premiere symposiums organised in India in the field of elementary particle physics, is held every other year and supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, India. Roughly 250 physicists and researchers participated in the 21st Symposium, discussing the latest advancements in the field in 18 plenary review talks, 15 invited mini-review talks and approximately 130 contributed presentations. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field.
This book reproduces the proceedings of the last of a series of "Euroconferences" dedicated to the ongoing near-infrared sky surveys DENIS and 2MASS. It presents the current status of both projects and some of the most outstanding results they have recently achieved in various areas of galactic and extragalactic astronomy. The book contains substantial articles by researchers directly involved in the survey data processing and interpretation which thoroughly describe the astrophysical context in which deep and homogeneous near-infrared surveys will eventually bring about significant breakthrough. They deal with the determination of basic parameters of the galactic structure, the stellar content of the bulge, the construction of unbiased and statistically significant samples of isolated very low mass stars and brown dwarfs, the improvement of the low-end of the stellar luminosity and mass functions, the complete census of young stellar objects in nearby giant molecular clouds, the accurate determination of the luminosity function of late-type giants in the Magellanic Clouds and the structure of the local universe. The analysis of a very small subsample of the full expected set of data promises an extraordinary harvest of discoveries in the 21st century, especially when these data are merged with the results of major related space missions such as Hipparcos and ISO. This book would be of general interest to graduate students in astronomy and professional astronomers involved in most areas of observational astronomy.
ThlS volume contalns a serles of lectures presented at the NATO Advanced Study Instltute on Hlgh Energy Phenomena Around Collapsed Stars, held ln Cargese, CorSlca from September 2 tlll Septemcer 13, 1985. The course was planned ln collaboratlon wlth a SClentlflC Organiz ing Commlttee (C. Cesarsky, France; A. Lyne, U.K.; D. Plnes, USA; J. Trlimper, W. Germany; E. Van den Heuvel, The Netherlands and L. Wolt]er, E.S.O., Mlinlch) and was fully supported by the NATO SClentlflc Affalrs Dlvlsion. It was organized wlth the alm of provldlng students and young researchers with an up-to-date account on the subject of galactlc hlgh energy astrophyslCS and was attended by about 60 researchers from many countrles. The lectures and seminars dld represent a complete coverage of our present knowledge and understandlng of Supernovae, Supernovae Remnants, Pulsars, sources of hlgh energy photons and partlcles. Most of them are reproduced ln thlS volume although unfortunately a few speakers chose not to submlt thelr text Slnce they felt that the materlal was already amply avallable ln the eXlstlng llterature. I wlsh to express my gratltude to the SClentlflc Affalrs Dlvislon of the North Atlantlc Treaty Organlzatlon for the generous support glven to the Instltute and to the lecturers and particlpants who contributed so much to the success of the course."
This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes.
This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The technical aspects related to the scientific analysis of the upcoming petabyte-scale databases are emphasized given the importance that scalable Knowledge Discovery techniques will have for the full exploitation of these databases. Based on the 2011 Astrostatistics and Data Mining in Large Astronomical Databases conference and school, this volume gathers examples of the work by leading authors in the areas of Astrophysics and Statistics, including a significant contribution from the various teams that prepared for the processing and analysis of the Gaia data.
Features Surveys of the systems approach to analysing and understanding multifaceted, complex problems in astrobiology, written by two scientists who also have engineering backgrounds. Systems applications to areas important to astrobiology, such as chemical evolution, prebiotic chemistry, geochemical/geophysical settings conducive to emergence of life, robotic space exploration, and much more. Wide appeal for all readers interested in the origin and occurrence of life in our Solar System and beyond.
The scope of the book is to give an overview of the history of
astroparticle physics, starting with the discovery of cosmic rays
(Victor Hess, 1912) and its background (X-ray, radioactivity).
The Study of Travelling Interplanetary Phenomena (STIP) was formally established by the International Council of Scientific Unions' Special Committee on Solar-Terrestrial Physics (SCOSTEP) in August 1973 with M. Dryer as Convenor and M. A. Shea as Secretary. The scientific objec tives of STIP are the study and search for understanding of quiet (i.e. normal or background) and active periods in the interplanetary medium. The concepts of informal, extemporaneous interdisciplinary research is continuo sly emphasised, and these concepts have proved to be extremely successful in conducting the very productive studies undertaken by the members. About 200 scientists are actively participating in STIP, their interests ranging from solar physics (insofar as it concerns the initi ation of phenomena which move out from the Sun) to the observation and study of comets and planetary magneto spheres and ionospheres. Solar wind plasma and fields, solar and galactic cosmic rays, interstellar interactions, solar radio astronomy and interplanetary scintillations of discrete radio sources are among the topics of interest."
Active Galactic Nuclei radiate over the electro-magnetic spectrum from radio waves to gamma rays. Understanding the physics of these objects therefore requires the synthesis of results from many different domains of Astronomy. It was the aim of the conference "Active Galactic Nuclei across the Electromagnetic Spectrum" to provide a forum where this exchange could take place. Some 300 astronomers participated to the conference, 250 of them presented results either as oral papers or in the form of posters. Observations in all domains of the electro magnetic spectrum in which astronomical observations can be made from the ground or from space were presented. Many theoretical contributions were also given. There has been a tremendous growth in the number and quality of Astronomical obser vations in many spectral domains over the past several years. Students of Active Galactic Nuclei have been particularly keen to make use of the available facilities (both space born and on the ground), often in a very organised way, in order to obtain repeated simultane ous data covering large bands of the spectrum. This approach has produced a qualitatively new set of data for understanding the physics of Active Galactic Nuclei. The task of the meeting was to review this data in a coherent way."
Magnetism, when extended beyond normal frameworks into cosmic space is characterized by an enormous spatial scale. Because of their large sizes the nature of magnets such as the Earth and the Sun is entirely different from the nature of a horseshoe magnet. The source of cosmic magnetism is associated with the hydrodynamic motions of a highly conductive medium. In this aspect, cosmic magnets resemble a dynamo. However, currents in the dynamo flow along properly ordered wires, while chaotic, turbulent motions are dominant inside stars and liquid planetary cores. This makes more intriguing and surprising the fact that these motions maintain a regular magnetic field. Maintenance of magnetic fields is even more impressive in huge magnets, i.e. galaxies. In fact, we are living inside a giant dynamo machine, the Milky Way galaxy. Although the idea of the global magnetic field of our Galaxy was clearly proposed almost 40 years ago, firm observational evidence and definite theoretical concepts of galactic magnetism have been developed only in the last decade. This book is the first attempt at a full and consistent presentation of this problem. We discuss both theoretical views on the origin of galactic magnetism and the methods of observational study. Previous discussions were on the level of review articles or separate chapters in monographs devoted to cosmic magnetic fields (see, e.g., H. K. Moffatt, 1978, E. N. Parker, 1979 and Zeldovich et aI., 1983).
"Meteoric phenomena" is the accepted term for the complex of physi cal phenomena that accompany the entry of meteoric bodies into the at mosphere of the earth (or of any planet). "Meteoric bodies" are usually defined as cosmic bodies observed by optical or radar techniques, when they enter the atmosphere. The limiting sensitivity of present-day radar equipment makes it possible to record meteors of up to stellar magnitude +14, while the most brilliant bolides may reach magnitude -19. On a mass 7 7 scale this corresponds approximately to a range of 10- to 10 g. How ever, met or astronomy is also concerned with larger objects, namely crater-forming meteorites, or objects that cause large-scale destruction when they arrive through the atmosphere (an example is the Tunguska River meteorite). Consideration of the interaction of such objects with 12 the terrestrial atmosphere extends the mass range to 10 g. On the other hand, scientists studying fragmentation processes in meteoric bod 7 ies have to consider particles with masses less than 10- g, and the use of data from meteoric-particle counters on rockets and artificial satel lites, from microcraters on the lunar surface, and from noctilucent clouds 12 lowers the minimum mass to 10- g. Therefore, the mass range of meteoric bodies, or meteoroids, encompasses 24 orders of magnitude. Although recent years have witnessed considerable development in meteor research, both in the Soviet Union and elsewhere, the main mono graphs on meteor physics were published twenty or more years ago."
This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci's chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series - and this one too - are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book.
A broad range of topics of current interest are discussed, from nuclear structure at the edge of stability to nuclear astrophysics and cosmic ray physics at the highest energies. Both the state of the art and basic background information are presented with a particular emphasis on interrelated research interests. The writers are all active scientists who enjoy the highest international reputation. They cover a range of problems of nuclear structure, in particular those concerning exotic nuclei and their decay modes, their relevance to nuclear reaction chains in stellar burning processes at various astrophysical sites, and as yet unsolved questions concerning the origin, acceleration mechanism, energy spectrum and elemental composition of high energy cosmic rays. Readership: Postgraduate physicists interested in the development of modern radioactive beam facilities, large array gamma ray and cosmic ray detectors, and new theoretical tools.
th The 4 ESO CCO Workshop, Optical Detectors for Astronomy, was held during September 13-16, 1999 at its usual location, the headquarters of the European Southern Observatory in Garching, Germany. We prefer to remember this workshop as a "meeting of friends," who came to Garching to visit ESO and to present their work, rather than a formal meeting. Based on our experience with the 1996 ESO CCO workshop, we deliberately put emphasis on creating an environment that encouraged the participants to stay together and informally exchange ideas. These informal events began with a tour of the BWM auto factory and continued with a reception at "SchloB Beletic," the conference dinner at a real SchloB of the Bavarian International School (where the participants enjoyed basket, baseball, table soccer, rock climbing and eventually dancing) and concluded with a tour of the Paulaner Brewery and dinner at the Seehaus in the Englisher Garten. The lunch "Biergarten," adjacent to the poster session area, was a daily meeting point. The result was a good mixture of excellent presentations and posters, collected in these Proceedings, and many occasions for people to get in touch and to have fun together, as witnessed by the selection of workshop pictures that we randomly placed between papers. This book contains a special contribution.
This book is a comprehensive description of hybrid plasma simulation models and will provide a very useful summary and guide to the vast literature on this topic. It addresses researchers and graduate students knowledgeable about computational science and numerical analysis, and can be used in courses on astrophysical and space plasmas. It is also meant for plasma installation designers. The coupled Vlasov--Maxwell equations with collisions describing well the physical system are far too heavy for numerical simulations. Hybrid models treat some aspects kinetically and some as fluids. In the first part the author discusses hybrid codes, which include a wide spectrum of description for ions, positrons, dust grains, atoms and electrons. In the second part he treats the applications to basic plasma phenomena like particle acceleration and dissipation processes as well as to the global interaction of the solar wind with nonmagnetic planets, comets, and the local interstellar medium.
Many new tests of gravity and, in particular, of Einstein's general relativity theory will be carried out in the near future: The Lense--Thirring effect and the equivalence principle will be tested in space; moreover, gravitational waves will be detected, and new atomic interferometers and clocks will be built for measurements in gravitational and inertial fields. New high-precision devices have made these experiments feasible. They will contribute to a better understanding of gravitational physics. Both experimental developments and the theoretical concepts are collected in this volume. Exhaustive reviews give an overall insight into the subject of experimental gravitation. |
![]() ![]() You may like...
Astrophysics In The Xxi Century With…
Cesar Augusto Zen Vasconcellos, Fridolin Weber
Hardcover
R3,394
Discovery Miles 33 940
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
Advances in the Physics of Stars - in…
Nazar R Ikhsanov, Galina L Klimchitskaya, …
Hardcover
R1,547
Discovery Miles 15 470
|