Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The sine-Gordon model is a ubiquitous model of Mathematical Physics with a wide range of applications extending from coupled torsion pendula and Josephson junction arrays to gravitational and high-energy physics models. The purpose of this book is to present a summary of recent developments in this field, incorporating both introductory background material, but also with a strong view towards modern applications, recent experiments, developments regarding the existence, stability, dynamics and asymptotics of nonlinear waves that arise in the model. This book is of particular interest to a wide range of researchers in this field, but serves as an introductory text for young researchers and students interested in the topic. The book consists of well-selected thematic chapters on diverse mathematical and physical aspects of the equation carefully chosen and assigned.
This textbook is a basic introduction to kinetic plasma phenomena in solar and stellar coronae. The author unifies observations and theory which gives a wide perspective to the subject. An important feature is the lucidly written presentation of the fundamentals of plasma physics. The basic theory developed is then extended to some exemplary and important observations of coronal dynamics, such as coronal current, particle acceleration, propagation of particle beams, and shocks. The book has grown from the author's introductory courses on plasma astrophysics at the Swiss Federal Institute of Technnology (ETH). It is aimed at advanced undergraduates and first-year graduate students without a background in plasma physics. It should also be of interest to more senior research workers involved in coronal physics, solar/stellar winds, and various other fields of plasma astrophysics. Problems suitable for class use are included at the end of each chapter.
IAU Symposium No. 134 on Active Galactic Nuclei was hosted by the Lick Observatory, as part of the celebration of its centennial, for the Observatory went into operation as part of the University of California on June 1, 1888. Twenty years later, in 1908, Lick Observatory graduate student Edward A. Fath recognized the unusual emission-line character of the spectrum of the nucleus of the spiral "nebula" NGC 1068, an object now well-known as one of the nearest and brightest Seyfert galaxies and active galactic nuclei. Ten years after that, and seventy years before this Symposium, Lick Observatory faculty member Heber D. Curtis published his description of the "curious straight ray" in M 87, "apparently connected with the nucleus by a thin line of matter," which we now recognize as an example of one of the jets which are the subject of so much current AGN research. The symposium was held at Kresge College on the campus of the University of California, Santa Cruz, only a short walk through the redwood groves to the Lick Observatory offices. A total of 232 astronomers and astrophysicists from 24 countries attended and took part in the Symposium. About 200 more had applied to come, but could not be accepted in order to keep the meeting at a reasonable size. Most of the participants lived in the Kresge College apartments immediately adjacent to the Kresge Town Hall in which the oral sessions took place.
Over the past two decades auroral science has developed from a somewhat mysterious and imprecise specialty into a discipline central in the study of the ionosphere and magnetosphere. The investigation of aurora unites scientists with very different backgrounds and interests so that it is difficult to write a self-contained account of the field in a book of reasonable length. In this work I have attempted to include those aspects of theory which I have found valuable in predicting the effects on the atmosphere of auroral particle precipitation. In addition I have attempted to describe the techniques of observation with particular emphasis on optical methods which have been useful. While the aeronomy of aurora has been regarded as central, the mechanisms by which particles are accelerated and precipitated into the atmosphere is of no less interest. This aspect of the subject has however been treated in a briefer fashion since it is a part of the immense and rapidly developing field of magnetospheric science. Generally I have attempted to provide a coherent introduction to auroral science with an emphasis on relatively simple physical interpretations and models. References are given to enable the reader to find more extensive or rigorous discussions of particular topics. A fairly complete, quantitative atlas of the auroral spectrum is included.
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. It takes a practical approach to the characterisation of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers and graduate students in radio astronomy and communication technology.
Explores the history and significance of interplanetary space missions. Features detailed explanations and mathematical methods for trajectory optimization. Includes detailed explanations and mathematical methods for mission analysis for interplanetary missions. Covers the introduction, mathematical methods, and applications of the N-body problem (N>2). Discusses navigation and targeting for interplanetary mission.
This NATO Advanced Study Institute course provided an updated understanding, from a fundamental and deep point of view, of the progress and current problems in the early universe, cosmic microwave background radiation, large-scale struc ture, dark matter problem, and the interplay between them. Emphasis was placed on the mutual impact of fundamental physics and cosmology, both at the theo retical and experimental or observational levels, within a deep and well defined programme, and a global unifying view, which, in addition, provides of careful inter-disciplinarity. In addition, each course of this series introduced and promoted topics or sub jects which, although not of a purely astrophysical or cosmological nature, were of relevant physical interest for astrophysics and cosmology. Deep understanding, clarification, synthesis, and careful interdisciplinarity within a fundamental physics framework, were the main goals of the course. Lectures ranged from a motivation and pedagogical introduction for students and participants not directly working in the field to the latest developments and most recent results. All lectures were plenary, had the same duration, and were followed by a discus sion. The course brought together experimentalists and theoreticans physicists, astro physicists and astronomers from a wide variety of backgrounds, including young scientists at the post-doctoral level, senior scientists and advanced graduate stu dents as well."
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
Astrophysics is facing challenging aims such as deep cosmology at redshift higher than 10 to constrain cosmology models, or the detection of exoplanets, and possibly terrestrial exoplanets, and several others. It requires unprecedented ambitious R&D programs, which have definitely to rely on a tight cooperation between astrophysics and optics communities. The book addresses most of the most critical interdisciplinary domains where they interact, or where they will do. A first need is to collect more light, i.e. telescopes still larger than the current 8-10 meter class ones. Decametric, and even hectometric, optical (from UV to IR wavelengths) telescopes are being studied. Whereas up to now the light collecting surface of new telescopes was approximately 4 times that of the previous generation, now this factor is growing to 10 to 100. This quantum leap urges to implement new methods or technologies developed in the optics community, both in academic labs and in the industry. Given the astrophysical goals and technological constraints, new generation adaptive optics with a huge number of actuators and laser guide stars devices have to be developed, from theoretical bases to experimental works. Two other newcomers in observational astrophysics are interferometric arrays of optical telescopes and gravitational wave detectors. Up-to-date reviews of detectors and of spectrographs are given, as well as forefront R&D in the field of optical coatings and of guided optics. Possible new ways to handle photons are also addressed, based on quantum physics. More and more signal processing algorithms are a part and parcel of any modern instrumentation. Thus finally the book gives two reviews about wavefront processing and about image restoration and deconvolution algorithms for ill conditioned cases.
The mono graph contains 8 chapters, and their contents cover all principal aspects of the problem: 1. Introduction and brief his tory ofthe radiation problem and background information ofradiation hazard in the near-Earth and interplanetary space. 2. General description of radiation conditions and main sources of charged partic1es in the Earth's environment and interplanetary space, effects of space environment on spacecraft. 3. Basic information about physical conditions in space and main sources of charged particles in the Earth's environment and interplanetary space, in the context of "Space W eather" monitoring and prediction. 4. Trapped radiation belts of the Earth (ERB): theory of their origin, spatial and temporal dynamics, and experimental and statistical models. 5. Galactic cosmic rays (GCR): variations of energetic, temporal and spatial characteristics, long-term modulation, and anomalous cosmic ray (ACR) component, modeling oftheir dynamics. 6. Production of energetic particles (SEPs) at/ne ar the Sun: available databases, acceleration, propagation, and prediction of individual SEP event, statistical models of solar cosmic rays (SCR). 7. Existing empirical techniques of estimating, prediction and modeling of radiation hazard, methodical approaches and constraints, some questions of changes in the Earth's radiation environment due to changes of the solar activity level. 8. Unresolved problems of radiation hazard prediction and spacecraft protection, radiation experiments on board the spacecraft, estimating of radiation conditions during interplanetary missions. Space does not allow us to explain every time the solar-terrestrial and radiation physics nomencIature used in current English-language literature.
This text presents a comprehensive account of the magnetic fields of various celestial bodies - the Sun, the Moon, planets, stars, the Milky Way, and galaxies, as well as the interplanetary, interstellar and intergalactic media. The original Chinese edition was published in Beijing in 1978. The present English edition has been enhanced and thoroughly rewritten. This monograph is characterized by its detail and may be used as a reference and textbook for scientific researchers and students of astronomy, space physics, geophysics and other related sciences.
This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.
This book presents a collection of focused review papers on the advances in topics in modern astronomy, astrophysics, cosmology and planetary science. The chapters are written by expert members of an EU-funded ERASMUS+ program of strategic partnership between several European institutes. The 13 reviews comprise the topics: Space debris, optical measurements Meteors, light from comets and asteroids Extrasolar enigmas: from disintegrating exoplanets to exo-asteroids Physical conditions and chemical abundances in photoionized nebulae from optical spectra Observational Constraints on the Common Envelope Phase A modern guide to quantitative spectroscopy of massive OB stars Explosion mechanisms of core-collapse supernovae and their observational signatures Low-mass and substellar eclipsing binaries in stellar clusters Globular cluster systems and Galaxy Formation Hot atmospheres of galaxies, groups, and clusters of galaxies The establishment of the Standard Cosmological Model through observations Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere Starburst galaxies The book is intended for the general astronomical community as well as for advanced students who could use it as a guideline, inspiration and overview for their future careers in astronomy.
This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent progress is presented in the observational study of quasi-periodic pulsations in solar and stellar flares with radio, optical, X and gamma rays. In addition, the authors investigate the origin of coherent radio emission from stellar loops, paying special attention to their fine structure. For advanced students and specialists in astronomy, as well as theoretical and plasma physics.
Solar and geomagnetic variability are of considerable interest for scientists of many different persuasions and indeed one has the distinct impression that for the sun at least, there is direct relevance for mankind in general as the interrelation between solar and terrestrial phenomena is starting to be appreciated. From the vast time scale of interest in the variability field, attention was confined to the last 10,000 years in a NATO Advanced Research Workshop held from April 6 - 10, 1987 in Durham, England, and the present publication comprises the lectures given there. Such a Workshop was very timely in view of the impressive new data available from 14C analysis in dated tree rings and lOBe in polar ice cores, from natural palaeomagnetic records in lacustrine sediments and from archaeomagnetic material. Also to be mentioned are new studies of historical accounts of naked-eye sunspots and aurorae. All the data have contributed to improvements in under standing the relative variations of solar properties, the geomagnetic field and climate and it is hoped that this volume will convey the flavour of these advances in knowledge. A feature of the Workshop was the lively discussions which followed so many of the papers. There were several instances of healthy disagreement and this is reflected in the opposing views presented inanumber of the papers published here."
For many astronomers, Adaptive Optics is something like a dream coming true. Sinee 1609 and the first observations of celestial bodies performed with the help of an optieal teleseope, astronomers have always fighted to improve the 'resolving power' of their instruments. For a long time, engineers have trimmed the optieal quality of the teleseopes, until they finally reaehed the barrier set by the atmospherie turbulence, a few seconds of are. At that point, the intrinsic quality of the site beeame a major issue to establish new observatories with modern telescopes, and astronomers started to desert the urban skies and to migrate toward mountains and deserts. This quest has been sueeessful and a few privileged sites, where the average natural 'seeing' is close to 0. 5," are now hosting clusters of giant telescopes of the 4 m and soon 10 m class. Yet, this atmospherie limit corresponds in the visible wavelength range to the diffraetion limit of a 20 em telescope only. The loss was severe: a faetor 20 in angular and several hundred in peak energy eoncentration, i. e. in deteetivity of resolution very faint objeets. In the beginning of the seventies, two doors half opened to provide a way out of this dead-end. First, the technique of speckle interferometry (and its various related developments) has allowed to restore the diffraetion limit of large telescopes at visible and infrared wavelengths (see, e. g.
Der Blick zu den Sternen.- Ovids gewoelbter Himmel.- Der Sonnenwagen.- Jupiter und Kallisto.- Jupiter und Europa.- Perseus und Andromeda.- Der Sternenhimmel im Jahreskreis.- Der Himmel im Fruhling.- Sternzug: "Deichsellinie bis Spica".- Der Himmel im Sommer.- Sternzuge: "Funfsternreihe" und "Grosses Dreieck".- Der Himmel im Herbst.- Sternzug: "Kolurlinie".- Der Himmel im Winter.- Sternzuge: "Grosser Wagen und Polarstern" und "Grosses Sechseck um Orion".- Himmelskarten fur das ganze Jahr.- Tabellen.- Karten.- Sternbilder und uberliefertes Wissen.- Adler.- Andromeda.- Barenhuter.- Becher.- Delphin.- Drache.- Fische.- Fuhrmann.- Grosser Bar.- Grosser Hund.- Hase.- Herkules.- Jungfrau.- Kassiopeia.- Kleiner Bar.- Kleiner Hund.- Krebs.- Leier.- Loewe.- Noerdliche Krone.- Noerdliche Wasserschlange.- Orion.- Pegasus.- Perseus.- Rabe.- Schlange, Schlangentrager.- Schutze.- Schwan.- Skorpion.- Steinbock.- Stier.- Waage.- Walfisch.- Wassermann.- Widder.- Zwillinge.- Wissenschaftliche Bilder.- Das Universum antiker Astronomen.- Beobachtung der Sonne.- Beobachtung der Sterne.- Die Bewegung der Sonne vor dem Fixsternhintergrund.- Die Deutung der Beobachtungen als Zwei-Kugel-Universum.- Die Bewegung von Planeten vor dem Fixsternhintergrund.- Kopernikanisches Universum.- Die Philosophie der Bilder.- Das naturwissenschaftliche Bild.- Zeiten "normaler Wissenschaft".- Selbst und Sein.- Quellen und weiterfuhrende Literatur.- Quellenhinweise.- Schrifttum.- Fruhe Quellen uber Sternbilder und Mythen.- Menschen, Goetter und Damonen.- Namen und Kurzbeschreibungen.- AEhnliche oder nahezu aquivalente Gottheiten.- Symbole, Kennzeichen und Eigenschaften.- Funktion, Tatigkeit und Aufgabe.- Die Lage des Mondes und der Planeten auf der Ekliptik.- Himmelskarten und besondere Objekte.- Danksagung.- International gebrauchliche Fachbezeichnungen und Sternbildabkurzungen.- Verzeichnis der Sterne und Sternbilder.- Verzeichnis zur Mythologie.- Gesamtverzeichnis.
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
Solar-Terrestrial Physics: The Study of Mankind's Newest Frontier Solar-Terrestrial Physics (STP) has been around for 100 years. However, it only became known as a scientific discipline under that name when the physical domain studied by STP became accessible to in situ observation and measurement by man or man-made instruments. Indeed, it was STP that provided the initial scientific driving force for the launching of man-made devices into extra-terrestrial space during the International Geophysical Year - aided of course by the genetically engrained drive of humans to expand their frontiers of knowledge, influence and dominance. We may define STP as the discipline dealing with the variable components of solar corpuscular and electromagnetic emissions, the physical processes governing their sources and their propagation through interplanetary space, and the physical-chemical processes related to their interaction with the Earth and other bodies in interplanetary space. Much of STP deals with fully-or partially-ionized gas flows and related energy, momentum and mass transfer in what now appears as one single system made up of distinct but strongly interacting parts, reaching from the photosphere out to the confines of the heliopause, engulfing planets and other solar system bodies, and dipping deep into 6 the Earth's atmosphere.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years."
These proceedings gather invited and contributed talks presented at the XXI DAE-BRNS High Energy Physics Symposium, which was held at the Indian Institute of Technology Guwahati in December 2014. The contributions cover many of the most active research areas in particle physics, namely (i) Electroweak Physics; (ii) QCD and Heavy Ion Physics; (iii) Heavy Flavour Physics and CP Violation; (iv) Neutrino Physics; (v) Astro-particle Physics and Cosmology; (vi) Formal Theory; (vii) Future Colliders and New Machines; and (viii) BSM Physics: SUSY, Extra Dimensions, Composites etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the premiere symposiums organised in India in the field of elementary particle physics, is held every other year and supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, India. Roughly 250 physicists and researchers participated in the 21st Symposium, discussing the latest advancements in the field in 18 plenary review talks, 15 invited mini-review talks and approximately 130 contributed presentations. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field. Riccardo Giacconi Harvard/Smithsonian Center for Astrophysics The meeting of the High Energy Astrophysics Division of the American Astronomical Society, held in Cambridge, Massachusetts on January 28- 30, 1980, marks the coming of age of X-ray astronomy. In the 18 years since the discovery of the first extrasolar X-ray source, Sco X-l, the field has experienced an extremely rapid instrumentation development culminating with the launch on November 13, 1978 of the Einstein Ob servatory (HEAO-2) which first introduced the use of high resolution imaging telescopes to the study of galactic and extragalactic X-ray sources. The Einstein Observatory instruments can detect sources as faint as 10-7 Sco X-lor about 17 magnitudes fainter. The technological developments in the field have been paralleled by a host of new discoveries: in the early 1960's the detection of 9 "X-ray stars," objects 10 times more luminous in X-rays than the Sun and among the brightest stellar objects at all wavelengths; in the late 1960's and early 1970's the discovery of the nature of such systems which were identified as collapsed stars (neutron stars and black holes) in mass exchange binary systems, and the detection of the first few extragalactic sources."
Faster than light - Einstein's relativity is on its way down. It's a Newtonian universe once again. |
You may like...
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,653
Discovery Miles 26 530
A Brief History of Black Holes - And why…
Dr. Becky Smethurst
Hardcover
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
|