![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
From the reviews: .."...The book is a very good balance between theory and applications, of analysis and synthesis, keeping always the focus on the comprehension of the physics ruling our planetary system. In summary, this represents both an excellent textbook for students and a fundamental reference, and encyclopedic summary current knowledge, for researchers in the Solar System field." (Alessandro Rossi, Celestial Mechanics and Dynamical Astronomy, 2005)
These are the proceedings of the Symposium 3 of JENAM 2011 on new scientific challenges posed by the Sun. The topics covered are 1. The unusual sunspot minimum, which poses challenges to the solar dynamo theory 2. The Sun's Terra-Hertz emission, which opens a new observational window 3. Corona wave activity 4. Space weather agents - initiation, propagation, and forecasting In 21 in-depth contributions, the reader will be presented with the latest findings."
It is good to mark the new Millennium by looking back as well as forward. Whatever Shines Should Be Observed looks to the nineteenth century to celebrate the achievements of five distinguished women, four of whom were born in Ireland while the fifth married into an Irish family, who made pioneering contributions to photography, microscopy, astronomy and astrophysics. The women featured came from either aristocratic or professional families. Thus, at first sight, they had many material advantages among their peers. In the ranks of the aristocracy there was often a great passion for learning, and the mansions in which these families lived contained libraries, technical equipment (microscopes and telescopes) and collections from the world of nature. More modest professional households of the time were rich in books, while activities such as observing the stars, collecting plants etc. typically formed an integral part of the children's education. To balance this it was the prevailing philosophy that boys could learn, in addition to basic subjects, mathematics, mechanics, physics, chemistry and classical languages, while girls were channelled into 'polite' subjects like music and needlework. This arrangement allowed boys to progress to University should they so wish, where a range of interesting career choices (including science and engineering) was open to them. Girls, on the other hand, usually received their education at home, often under the tutelage of a governess who would not herself had had any serious contact with scientific or technical subjects. In particular, progress to University was not during most of the nineteenth century an option for women, and access toscientific libraries and institutions was also prohibited. Although those women with aristocratic and professional backgrounds were in a materially privileged position and had an opportunity to 'see' through the activities of their male friends and relatives how professional scientific life was lived, to progress from their places in society to the professions required very special determination. Firstly, they had to individually acquire scientific and technical knowledge, as well as necessary laboratory methodology, without the advantage of formal training. Then, it was necessary to carve out a niche in a particular field, despite the special difficulties attending the publication of scientific books or articles by a woman. There was no easy road to science, or even any well worn track. To achieve recognition was a pioneering activity without discernible ground rules. With the hindsight of history, we recognise that the heroic efforts which the women featured in this volume made to overcome the social constraints that held them back from learning about, and participating in, scientific and technical subjects, had a consequence on a much broader canvas. In addition to what they each achieved professionally they contributed within society to a gradual erosion of those barriers raised against the participation of women in academic life, thereby assisting in allowing University places and professional opportunities to gradually become generally available. It is a privilege to salute and thank the wonderful women of the nineteenth century herein described for what they have contributed to the women of today. William Herschel's famous motto quicquid nitet notandum (whatever shinesshould be observed) applies in a particular way to the luminous quality of their individual lives, and those of us who presently observe their shining, as well as those who now wait in the wings of the coming centuries to emerge upon the scene, can each see a little further by their light.
This thesis offers the first laboratory validation of microscopic simulations of radio emission from particle showers, including a detailed description of the simulation study. It presents a potential future avenue for resolving the mass composition of cosmic rays via radio detection of air showers. Particle showers are created from cascading interactions when high-energy particles collide with matter, e.g. with air in the case of cosmic radiation, or with a particle detector in the case of experiments at CERN. These showers can consist of billions of particles, mostly electrons, positrons and photons. They emit radio waves when the absorbing medium is in a magnetic field, and this radio emission can be used as a novel means of detecting and drawing inferences on the shower and the primary particle. The new method is currently being established in cosmic ray research, where large antenna arrays may soon replace or complement traditional particle detectors. In thi s study, a complete microscopic simulation of a radio-emission experiment conducted at Stanford Linear Accelerator Center (SLAC), Stanford/USA, is performed, and the underlying physical models are validated. The model is subsequently applied to the Square Kilometre Array (SKA) project, which is a large interferometer for radio astronomy. It is demonstrated that the SKA, with some modifications, might also be used for cosmic ray research based on radio detection of high-energy particles from the cosmos.
NUEVA TEORIA SOBRE EL ORIGEN DEL UNIVERSO Y DE LA VIDA La teoria de la Energia Original afirma que bajo la guia y codigos de la Energia Original el universo se origino a partir del foton: La Fotogenesis del foton es el origen del universo; La biogenesis del foton es el origen de la vida. Esto implica que el universo no derivo del infinitamente, caliente, denso, atomo primordial, a partir de la nada; que no se formo posterior a los eventos de la Singularidad y de la gran explosion, el Big Bang. La masa dependiente fuerza gravitacional no es la fuerza primordial que rige el universo. La Nada solamente puede crear Nada. La suma de masa entre proton, neutron y electrones quizas constituya el 4% del volumen de un atomo, el resto es energia. La materia solo constituye el 4% del volumen de todo el universo; el resto es ocupado por energia electromagnetica, haciendo que el universo sea homogeneo, isotropico y estable. Por lo tanto, la energia electromagnetica es el constituyente primordial del universo Esto implica que las supuestas Materia Negra, Energia Negra y la Constante Cosmica son innecesarias para la integridad del universo. Entre al fascinante origen del universo
This book presents novel observational evidence toward detecting and characterizing the products of massive, interacting binary stars. As a majority of massive stars are born in close binary systems, a large number of so-called massive binary interaction products are predicted to exist; however, few have been identified so far. Based on observations with the largest telescopes around the world, equipped with state-of-the-art instrumentation, this book helps to remedy this situation. In her outstanding PhD-thesis Julia Bodensteiner identifies a new class of post-interaction binaries in a short-lived phase just briefly after the initially more massive star has been stripped of part of its envelope. She further provides new evidence for the Be phenomenon to largely result from binary interactions. These results represented a new and testable prediction for the evolution of these stars and opened up a new way forward for identifying hundreds of post-interaction products. Finally, using the MUSE integral field spectrograph at the Very Large Telescope in Chile, the author presents a novel spectroscopic campaign focusing on the 40 Myr-old star cluster NGC 330 in the Small Magellanic Clouds. Combined with photometric observations from the Hubble Space Telescope, the MUSE data allow to characterize the entire massive star population of NGC 330, revealing their multiplicity properties and rotational velocities and providing unique observational constraints on their (binary) evolution history. This is made possible by the developments of novel numerical methods allowing to extract star spectra from the MUSE integral field spectroscopic data and to characterize their properties by the simultaneous comparison of MUSE spectroscopy and Hubble photometry with atmospheric models. This book is a partly re-written version of the author's thesis offering a highly readable coherent text presenting not only new insights into the properties of binary interaction products but also giving students an excellent introduction into the field.
Relativistic Astrophysics and Cosmology offers a succinct and self-contained treatment of general relativity and its application to compact objects, gravitational waves and cosmology. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and of instrumental issues where appropriate. The book includes such topical issues as the Gravity Probe B mission, interferometer detectors of gravitational waves, and the physics behind the angular power spectrum of the cosmic microwave background (CMB). Written for advanced undergraduates and beginning graduate students in (astro)physics, it is ideally suited for a lecture course and contains 140 exercises with extensive hints. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics.
Prof. Leon Mestel has been an inspiration to many to study the role of magnetism in the Cosmos. To mark the occasion of his retin'ment from the University of Sussex after 43 years in astrophysics, several of his friends and former students decided to hold an advanced research workshop in his honour. NATO agreed to finance this venture which was held at the Institute of Astronomy at Cambridge. The scientific organizing committee was J. Landstreet, D. Lynden-Bell, F. Pacini, M.A. Rud0rman and N.O. Weiss and most leading experts on Cosmical magnetism agreed to come. We are particularly grateful to Lyman Spitzer who, ably helped by his wife Doreen, !!;ave the after dinner addre~s on how the goddess Astrophysica had foreseen Leon's achievements in classical Greek times. Not without regret we decided to maintain the homog0neity of the material and therefore could not cover Leon Mestel's major achievements in non-magnetic astronomy. His work on the cooling of white dwarfs, his understanding that degenerate hydrogen was a nuclear explosive since its pressure was almost independent of temperature and hence, his picture of supernovae, which is now more commonly applied to novae, his seminal understanding of the 'law' of galactic rotation and his work on the non-linear development of t hp anisotropies generated in gravitational collapse.
Much has been said and written about the abilities of modern instrumentation to help solve problems of combustion in engines. In the main, however, the design and fabr ication of combustion chambers continues to be based on extrapolation of exper ience gained from use and rig tests, with little input from advanced techniques such as those based on optical diagnotics. At the same time, it has become increasingly difficult to design better combustion chambers without knowledge of the relevant flow processes. Thus, the future must involve improved understanding which, in turn, will require detailed measurements of velocity, temperature and concentration. The need to narrow the gap between current industrial practice and the acquisition and implementation of improved techniques motivated the organization of the Advanced Study Institute upon which this volume is based. This Institute on Instrumentation for Combustion and Flow in Engines was arranged to display the needs of industry and the possibilities made available by modern instrumentation and, at the same time, to make clear the relative advantages of optical and probe techniques. Held at Vimeiro during the period from 13 to 26 September, 1987, the Institute was attended by 120 participants and 16 invited lecturers.
This NATO Advanced Research Workshop was devoted to the pre sentation, evaluation, and critical discussion of numerical methods in nonrelativistic and relativistic hydrodynamics, radia tive transfer, and radiation-coupled hydrodynamics. The unifying theme of the lectures was the successful application of these methods to challenging problems in astrophysics. The workshop was subdivided into 3 somewhat independent topics, each with their own subtheme. Under the heading radiation hydrodynamics were brought together context, theory, methodology, and application of radia tive transfer and radiation hydrodynamics in astrophysics. The intimate coupling between astronomy and radiation physics was underscored by examples from past and present research. Frame-dependence of both the equation of transfer (plus moments) and the underlying radiation quantities was discussed and clarified. Limiting regimes in radiation-coupled flow were identified and described; the dynamic diffusion regime received special emphasis. Numerical methods for continuum and line transfer equations in a given background were presented. Two examples of methods for computing dynamically coupled radia tion/matter fields were given. In l-d and assuming LTE the complete equations of radiation hydrodynamics can be solved with current computers. Such is not the case in 2- or 3-d, which were identified as target areas for research. The use of flux-limiters was vigorously discussed in this connection, and enlivened the meeting.
Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.
The Third Microquasar Workshop (or the 'Fifth' Workshop on Galactic Relativ istic Jet Sources), was held in Granada, Andalucia (Spain) on 11-13 September 2000. The aim of this workshop in Granada, following the previous Microquasar Workshops in Greenbelt (1997) and Paris (1998) and the Workshops on galactic sources with relativistic jets in Jodrell Bank (1996) and Milton Keynes (1998), was to focus on the theoretical and observational aspects of microquasars. The study of microquasars, the sources in our Galaxy displaying powerful re lativistic jets, is a rapidly advancing field in astrophysics. The new instrumentation on ground (MERLIN, SCUBA, VLA, VLT) and aboard satellites (ASCA, BSAX, ISO, IXAE and RXTE) has provided important results, and much more is expected to come from Chandra and XMM-Newton. In the further future, powerful instru mentation will come online in the sub-mm (ALMA) and gamma-rays (INTEG RAL), extending our coverage to important regions for the study of microquasars. Energy transport via relativistic jets is one of the most important physical mechan isms taking place in compact objects. Large efforts have been devoted to properly understand the disk-jet connection, and even the effects of rotation or magnetic fields. Several new important advances have been made recently, both from the point of view of the theoretical treatment of jets and the different new observational tests."
This thesis is devoted to ANTARES, the first underwater neutrino telescope in the Mediterranean sea. As the main scientific analysis, a search for high-energy neutrino emission from the region of the Fermi bubbles has been performed using data from the ANTARES detector. A method for the background estimation using off-zones has been developed specially for this measurement. A new likelihood for the limits calculation which treats both observations in the on-zone and in the off-zone in the similar way and also includes different systematic uncertainties has been constructed. The analysis of 2008-2011 ANTARES data yielded a 1.2 excess of events in the Fermi bubble regions, compatible with the no-signal hypothesis. For the optimistic case of no energy cutoff in the flux, the upper limit is within a factor of three of the prediction of the purely hadronic model based on the measured gamma-ray flux. The sensitivity improves as more data are accumulated (more than 65% gain in the sensitivity is expected once 2012-2016 data are added to the analysis).
Outstanding progress in near-infrared detection technology and in real-time image processing has led astronomers to start undertaking all-sky surveys in the 1--2 mum range (project DENIS in Europe and 2MASS in the U.S.A.), surveys which will have a considerable impact in various areas of astronomy. This book gathers the contributions of more than 80 specialists involved in fields of interest as different as low mass stars, late stages of stellar evolution, star formation, stellar populations of the Galaxy and the Magellanic Clouds, the local structure of the Universe, and observational cosmology. It describes the impact on these fields of the exhaustive data bases and catalogs of stars and galaxies that these surveys will provide. The considerable interest of these documents for the future of infrared space and ground-based projects and the complementarity with other currently ongoing or planned surveys in other spectral ranges are emphasized.
This book provides an accessible, yet thorough, introduction to special and general relativity, crafted and class-tested over many years of teaching. Suitable for advanced undergraduate and graduate students, this book provides clear descriptions of how to approach the mathematics and physics involved. It is also contains the latest exciting developments in the field, including dark energy, gravitational waves, and frame dragging. The table of contents has been carefully developed in consultation with a large number of instructors teaching courses worldwide, to ensure its wide applicability to modules on relativity and gravitation. Features: A clear, accessible writing style, presenting a sophisticated approach to the subject, that remains suitable for advanced undergraduate students and above Class-tested over many years To be accompanied by a partner volume on 'Advanced Topics' for students to further extend their learning
, This is the updated, widely revised, restructured and expanded
third edition of Lena et al.'s successful work Observational
Astrophysics. It presents a synthesis on tools and methods of
observational astrophysics of the early 21st century. Written
specifically for astrophysicists and graduate students, this
textbook focuses on fundamental and sometimes practical limitations
on the ultimate performance that an astronomical system may reach,
rather than presenting particular systems in detail.
The idea for organl.zl.ng an Advanced Research Workshop entirely devoted to the Earth rotation was born in 1983 when Professor Raymond Hide suggested this topic to the special NATO panel of global transport mechanism in the Geosciences. Such a specialized meeting did not take place since the GEOP research conference on the rotation of the Earth and polar motion which was held at the Ohio State University (USA) in 1973. In the last ten years, highly precise measurements of the Earth's rotation parameters and new global geophysical data have become available allowing major advance to be made in the under standing of the various irregularities affecting the Earth's rotation. The aim of the workshop was to bring together scientists who have made important contributions in this field during the last decade both at the observational and geophysical interpretation levels. The confe rence was divided into four main topics. The first session was dedicated to the definition, implementation and maintenance of the terrestrial and celestial reference systems. A few critical points have been identified as requiring further improvements: (i) appro priate selection of terrestrial sites recognized for their long term stability, (ii) determination of the relationship between terrestrial and celestial references systems as well as between the various terrestrial ones, (iii) improvment of the theory of a rotating elastic earth (the recently adopted theory needs already some corrections')."
This book's interdisciplinary scope aims at bridging various communities: 1) cosmochemists, who study meteoritic samples from our own solar system, 2) (sub-) millimetre astronomers, who measure the distribution of dust and gas of star-forming regions and planet-forming discs, 3) disc modellers, who describe the complex photo-chemical structure of parametric discs to fit these to observation, 4) computational astrophysicists, who attempt to decipher the dynamical structure of magnetised gaseous discs, and the effects the resulting internal structure has on the aerodynamic re-distribution of embedded solids, 5) theoreticians in planet formation theory, who aim to piece it all together eventually arriving at a coherent holistic picture of the architectures of planetary systems discovered by 6) the exoplanet observers, who provide us with unprecedented samples of exoplanet worlds. Combining these diverse fields the book sheds light onto the riddles that research on planet formation is currently confronted with, and paves the way for a comprehensive understanding of the formation, evolution, and dynamics of young solar systems. The chapters 'Chondrules - Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk', 'Dust Coagulation with Porosity Evolution' and 'The Emerging Paradigm of Pebble Accretion' are published open access under a CC BY 4.0 license via link.springer.com.
Proceedings of IAU Symposium No. 48 held in Morioka, Japan, May 9-15, 1971
This book, which has been in the making for some eighteen years, would never have begun were it not for Dr. David Dewhirst in 1976 kindly having shown the author a packet of papers in the archives of the Cambridge Obser vatories. These letters and miscellaneous papers of Fearon Fallows sparked an interest in the history of the Royal Observatory at the Cape of Good Hope which, after the diversion of producing several books on later phases of the Observatory, has finally resulted in a detailed study of the origin and first years of the Observatory's life. Publication of this book coincides with the 175th anniversary of the founding of the Royal Observatory, e.G.H. Observatories are built for the use of astronomers. They are built through astronomers, architects, engineers and contractors acting in concert (if not always in harmony). They are constructed, with whatever techniques and skills are available, from bricks, stones and mortar; but their construction may take a toll of personal relationships, patience, and flesh and blood."
This volume contains papers presented at an international conference on nuclear astrophysics, which brought together astronomers, astrophysicists and nuclear physicists for a discussion of nucleosynthesis, its role in the evolution of the universe and its possibilities as a diagnostic tool for stellar interiors. The contributions have been divided into the following sections: astronomical facts; nuclear physics; the early universe and galactic evolution; and stellar models and nucleosynthesis.
This thesis presents several significant new results that shed light on two major puzzles of modern cosmology: the nature of inflation, the very early phase of the universe that is thought to have given rise to the large-scale structures that we observe today; and that of the current accelerated expansion. In particular, it develops a clean method for characterizing linear cosmological perturbations for general theories where gravity is modified and/or affected by a new component, called dark energy, responsible for the accelerated expansion. It proposes a new extension to what were long thought to be the most general scalar field theories devoid of instabilities, and demonstrates the robustness of the relation between the energy scale of inflation and the predicted amplitude of gravitational waves. Finally, it consolidates a set of consistency relations between correlation functions of the cosmological density field and investigates the phenomenological consequences of their potential violation. Presented in a clear, succinct and rigorous style, each of these original results is both profound and important and will leave a deep mark on the field.
Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.
The Workshop "Optical Detectors for Astronomy" was held during October 8-10, 1996 at the headquarters of the European Southern Observatory in Garching, Germany. This was the third meeting of its kind, previous meetings being held in 1991 and 1993, but this is the first ESO "CCD Workshop" that has published proceedings. Most of the leading manufacturers and major astronomical observatories were represented, with the 117 attendees coming together from 14 different countries that spanned every continent on Earth. The motivation for the ESO CCD Workshop series is the creation of informal and open venue of information exchange about astronomical CCD detectors and systems. Judging from the reaction and feedback of the participants, the 1996 workshop was as successful as the previous editions, which is a credit to all who attended. The Workshop was organized as a mixture of invited talks, oral presentations, poster sessions and roundtable discussions, the latter used to foster a free exchange of ideas among participants. These technical sessions were complemented by an opening reception and a congenial evening in downtown Munich, which included a walking tour of the historic area followed by dinner at the famous Franziskaner brewery and an after dinner talk by Walter Kosonocky, who reviewed the history of CCD technology. |
You may like...
Traffic and Granular Flow '15
Victor L. Knoop, Winnie Daamen
Hardcover
R4,190
Discovery Miles 41 900
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,219
Discovery Miles 62 190
Computational and Statistical Methods…
Shen Liu, James McGree, …
Hardcover
R1,802
Discovery Miles 18 020
Scientific Computing - An Introductory…
Michael T. Heath
Paperback
Flexible Bayesian Regression Modelling
Yanan Fan, David Nott, …
Paperback
R2,427
Discovery Miles 24 270
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Essential Methods for Design Based…
Danny Pfeffermann, C.R. Rao
Paperback
R1,389
Discovery Miles 13 890
Teaching Statistics - A Bag of Tricks
Andrew Gelman, Deborah Nolan
Hardcover
R3,117
Discovery Miles 31 170
|