Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This text is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, numerical dynamical systems, molecular dynamics and ocean/atmosphere dynamics, nonequilibrium statistical mechanics. The volume will serve as a valuable reference for mathematicians, physicists, engineers, biologists and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open or non-equilibrium behaviour.
Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solu tions of simultaneous linear equations and on the determination of eigen values. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaus sian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We dis covered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D."
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
This monograph constructs correct extensions of extremal problems, including problems of multicriteria optimization as well as more general cone optimization problems. The author obtains common conditions of stability and asymptotic nonsensitivity of extremal problems under perturbation of a part of integral restrictions for finite and infinite systems of restrictions. Features include individual chapters on nonstandard approximation of finitely additive measures by indefinite integrals and constructions of attraction sets. Professor Chentsov illustrates abstract settings by providing examples of problems of impulse control, mathematical programming, and stochastic optimization.
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
"Optimization on Metric and Normed Spaces" is devoted to the recent progress in optimization on Banach spaces and complete metric spaces. Optimization problems are usually considered on metric spaces satisfying certain compactness assumptions which guarantee the existence of solutions and convergence of algorithms. This book considers spaces that do not satisfy such compactness assumptions. In order to overcome these difficulties, the book uses the Baire category approach and considers approximate solutions. Therefore, it presents a number of new results concerning penalty methods in constrained optimization, existence of solutions in parametric optimization, well-posedness of vector minimization problems, and many other results obtained in the last ten years. The book is intended for mathematicians interested in optimization and applied functional analysis.
The articles in this volume reflect a subsequent development after a scientific meeting entitled Carleman Estimates and Control Theory, held in Cartona in September 1999. The 14 research-level articles, written by experts, focus on new results on Carleman estimates and their applications to uniqueness and controlla- bility of partial differential equations and systems. The main topics are unique continuation for elliptic PDEs and systems, con- trol theory and inverse problems. New results on strong uniqueness for second or higher order operators are explored in detail in several papers. In the area of control theory. the reader will find applications of Carleman estimates to stabiliza- tion, observability and exact control for the wave and the SchrOdinger equations. A final paper presents a challenging list of open problems on the topic of control- lability of linear and sernilinear heat equations. The papers contain exhaustive and essentially self-contained proofs directly ac- cessible to mathematicians, physicists, and graduate students with an elementary background in PDEs. Contributors are L. Aloui, M. Bellassoued, N. Burq, F. Colombini, B. Dehman, C. Grammatico, M. Khenissi, H. Koch, P. Le Borgne, N. Lerner, T. Nishitani. T. Okaji, K.D. Phung, R. Regbaoui, X. Saint Raymond, D. Tataru, and E. Zuazua.
The results presented in this book are a product of research conducted by the author independently and in collaboration with other researchers in the field. In this light, this work encompasses the most recent collection of various concepts of regularity and nonsmooth analysis into one monograph. The first part of the book attempts to present an accessible and thorough introduction to nonsmooth analysis theory. Main concepts and some useful results are stated and illustrated through examples and exercises. The second part gathers the most prominent and recent results of various regularity concepts of sets, functions, and set-valued mappings in nonsmooth analysis. The third and final section contains six different application, with comments in relation to the existing literature.
This book discusses recent advances in the estimation and control of networked systems with unacknowledged packet losses: systems usually known as user-datagram-protocol-like. It presents both the optimal and sub-optimal solutions in the form of algorithms, which are designed to be implemented easily by computer routines. It also provides MATLAB (R) routines for the key algorithms. It shows how these methods and algorithms can solve estimation and control problems effectively, and identifies potential research directions and ideas to help readers grasp the field more easily. The novel auxiliary estimator method, which is able to deal with estimators that consist of exponentially increasing terms, is developed to analyze the stability and convergence of the optimal estimator. The book also explores the structure and solvability of the optimal control, i.e. linear quadratic Gaussian control. It develops various sub-optimal but efficient solutions for estimation and control for industrial and practical applications, and analyzes their stability and performance. This is a valuable resource for researchers studying networked control systems, especially those related to non-TCP-like networks. The practicality of the ideas included makes it useful for engineers working with networked control.
This book is based on a seminar given at the University of California at Los Angeles in the Spring of 1975. The choice of topics reflects my interests at the time and the needs of the students taking the course. Initially the lectures were written up for publication in the Lecture Notes series. How ever, when I accepted Professor A. V. Balakrishnan's invitation to publish them in the Springer series on Applications of Mathematics it became necessary to alter the informal and often abridged style of the notes and to rewrite or expand much of the original manuscript so as to make the book as self-contained as possible. Even so, no attempt has been made to write a comprehensive treatise on filtering theory, and the book still follows the original plan of the lectures. While this book was in preparation, the two-volume English translation of the work by R. S. Liptser and A. N. Shiryaev has appeared in this series. The first volume and the present book have the same approach to the sub ject, viz. that of martingale theory. Liptser and Shiryaev go into greater detail in the discussion of statistical applications and also consider inter polation and extrapolation as well as filtering."
This long-awaited book by two of the foremost researchers and writers in the field is the first part of a treatise that will cover the subject in breadth and depth, paying special attention to the historical origins, partly in applications, e.g. from geometrical optics, of parts of the theory. A variety of aids to the reader are provided: the detailed table of contents, an introduction to each chapter, section and subsection, an overview of the relevant liter- ature (in Vol. 2) plus the references in the Scholia to each chapter, in the (historical) footnotes, and in the biblio- graphy, and finally an index of the examples used throughout the book. Later volumes will deal with direct methods and regularity theory. Both individually and collectively these volumes will undoubtedly become standard references.
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily di erentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of di erent problems arising in the eld. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software.The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the eld, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization."
In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods). The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.
Presents recent developments in the areas of differential equations, dynamical systems, and control of finke and infinite dimensional systems. Focuses on current trends in differential equations and dynamical system research-from Darameterdependence of solutions to robui control laws for inflnite dimensional systems.
In his studies of cyclotomic fields, in view of establishing his monumental theorem about Fermat's last theorem, Kummer introduced "local" methods. They are concerned with divisibility of "ideal numbers" of cyclotomic fields by lambda = 1 - psi where psi is a primitive "p"-th root of 1 (p any odd prime). Henssel developed Kummer's ideas, constructed the field of "p"-adic numbers and proved the fundamental theorem known today. Kurschak formally introduced the concept of a valuation of a field, as being real valued functions on the set of non-zero elements of the field satisfying certain properties, like the "p"-adic valuations. Ostrowski, Hasse, Schmidt and others developed this theory and collectively, these topics form the primary focus of this book.
The basis for this book is a number of lectures given frequently by the author to third year students of the Department of Economics at Leningrad State University who specialize in economical cybernetics. The main purpose of this book is to provide the student with a relatively simple and easy-to-understand manual containing the basic mathematical machinery utilized in the theory of games. Practical examples (including those from the field of economics) serve mainly as an interpretation of the mathematical foundations of this theory rather than as indications of their actual or potential applicability. The present volume is significantly different from other books on the theory of games. The difference is both in the choice of mathematical problems as well as in the nature of the exposition. The realm of the problems is somewhat limited but the author has tried to achieve the greatest possible systematization in his exposition. Whenever possible the author has attempted to provide a game-theoretical argument with the necessary mathematical rigor and reasonable generality. Formal mathematical prerequisites for this book are quite modest. Only the elementary tools of linear algebra and mathematical analysis are used.
This self-contained volume surveys three decades of mathematical control theory and at the same time describes how the work of Roger Brockett shaped and influenced its development. Nine survey articles written by leading experts in the field, who have also been closely associated with Roger Brockett at various stages in his career, treat the subject cohesively and in depth. This volume will provide an important reference for graduate students and researchers, as well as for mathematicians, engineers and scientists whose work involves concepts and the language of control and systems theory.
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
This volume contains the Proceedings of the International Workshop "Variational Methods For Discontinuous Structures," held at Villa Erba Antica (Cernobbio) on the Lago di Como, July 4-6, 2001. The workshop was jointly organized by the Dipartimento di Matematica Francesco Brioschi of Milano Politecnico and the International School for Advanced Studies (SISSA) of Trieste. In past years the calculus of variations faced mainly the study of continuous structures, particularly problems with smooth solutions. One of the deepest and more delicate problems was the regularity of weak solutions. More recently, new sophisticated tools have been introduced in order to study discontinuities. In many variational problems solutions develop singularities, and sometimes the most interesting part of a solution is the singularity itself. The conference intended to focus on recent developments in this direction. Some of the talks were devoted to differential or variational modelling of image segmentation, occlusion and textures synthesizing in image analysis, variational description of micro-magnetic materials, dimension reduction and structured deformations in elasticity and plasticity, phase transitions, irrigation and drainage, evolution of crystalline shapes. In most cases theoretical and numerical analysis of these models were provided. Other talks were dedicated to specific problems of the calculus of variations: variational theory of weak or lower-dimensional structures, optimal transport problems with free Dirichlet regions, higher order variational problems, symmetrization in the BV framework. This volume contains contributions by 12 of the 16 speakers invited to deliver lectures in the workshop. Most of the contributions present original results in fields which are rapidly evolving at present.
Mechanics and mathematics have been complementary partners since
Newton's time and the history of science shows much evidence of the
beneficial influence of these disciplines on each other. Driven by
increasingly elaborate modern technological applications the
symbiotic relationship between mathematics and mechanics is
continually growing. However, the increasingly large number of
specialist journals has generated a duality gap between the two
partners, and this gap is growing wider.
This book provides an introduction to the analysis and the control mechanism of physical, chemical, biological, technological and economic models and their nonequilibrium evolution dynamics. Strong emphasis is placed on the foundation of variational principles, evolution and control equations, numerical methods, statistical concepts and techniques for solving or estimation of stochastic control problems for systems with a high degree of complexity. In particular, the central aim of this book is developing a synergetic connection between theoretical concepts and real applications. This book is a modern introduction and a helpful tool for researchers as well as for graduate students interested in econophysics and related topics.
This book addresses remaining life prediction and predictive maintenance of equipment. It systematically summarizes the key research findings made by the author and his team and focuses on how to create equipment performance degradation and residual life prediction models based on the performance monitoring data produced by currently used and historical equipment. Some of the theoretical results covered here have been used to make remaining life predictions and maintenance-related decisions for aerospace products such as gyros and platforms. Given its scope, the book offers a valuable reference guide for those pursuing theoretical or applied research in the areas of fault diagnosis and fault-tolerant control, remaining life prediction, and maintenance decision-making.
Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos's past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos's work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: * Deterministic global optimization* Variational inequalities and equilibrium problems* Approximation and complexity in numerical optimization* Non-smooth optimization * Statistical models and data mining* Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics. |
You may like...
Numerical Engineering Optimization…
Andreas Oechsner, Resam Makvandi
Hardcover
R1,483
Discovery Miles 14 830
Nonlinear Industrial Control Systems…
Michael J. Grimble, Pawel Majecki
Hardcover
R6,324
Discovery Miles 63 240
Nonsmooth Optimization and Its…
Seyedehsomayeh Hosseini, Boris S. Mordukhovich, …
Hardcover
R2,789
Discovery Miles 27 890
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,156
Discovery Miles 61 560
Stochastic Optimal Control in Infinite…
Giorgio Fabbri, Fausto Gozzi, …
Hardcover
R6,397
Discovery Miles 63 970
Solvability, Regularity, and Optimal…
Pierluigi Colli, Angelo Favini, …
Hardcover
R3,622
Discovery Miles 36 220
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,831
Discovery Miles 28 310
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,839
Discovery Miles 28 390
Discrete-Time Higher Order Sliding Mode…
Nalin Kumar Sharma, Janardhanan Sivaramakrishnan
Hardcover
R2,789
Discovery Miles 27 890
|