![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
The issue of regularity has played a central role in the theory of Partial Differential Equations almost since its inception, and despite the tremendous advances made it still remains a very fruitful research field. In particular considerable strides have been made in regularity estimates for degenerate and singular elliptic and parabolic equations over the last several years, and in many unexpected and challenging directions. Because of all these recent results, it seemed high time to create an overview that would highlight emerging trends and issues in this fascinating research topic in a proper and effective way. The course aimed to show the deep connections between these topics and to open new research directions through the contributions of leading experts in all of these fields.
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.
This book is the result of over ten (10) years of research and development in flexible robots and structures at Sandia National Laboratories. The authors de cided to collect this wealth of knowledge into a set of viewgraphs in order to teach a graduate class in Flexible Robot Dynamics and Controls within the Mechanical En gineering Department at the University of New Mexico (UNM). These viewgraphs, encouragement from several students, and many late nights have produced a book that should provide an upper-level undergraduate and graduate textbook and a reference for experienced professionals. The content of this book spans several disciplines including structural dynam ics, system identification, optimization, and linear, digital, and nonlinear control theory which are developed from several points of view including electrical, me chanical, and aerospace engineering as well as engineering mechanics. As a result, the authors believe that this book demonstrates the value of solid applied theory when developing hardware solutions to real world problems. The reader will find many real world applications in this book and will be shown the applicability of these techniques beyond flexible structures which, in turn, shows the value of mul tidisciplinary education and teaming.
Discrete-time systems arise as a matter of course in modelling biological or economic processes. For systems and control theory they are of major importance, particularly in connection with digital control applications. If sampling is performed in order to control periodic processes, almost periodic systems are obtained. This is a strong motivation to investigate the discrete-time systems with time-varying coefficients. This research monograph contains a study of discrete-time nodes, the discrete counterpart of the theory elaborated by Bart, Gohberg and Kaashoek for the continuous case, discrete-time Lyapunov and Riccati equations, discrete-time Hamiltonian systems in connection with input-output operators and associated Hankel and Toeplitz operators. All these tools aim to solve the problems of stabilization and attenuation of disturbances in the framework of H2- and H-control theory. The book is the first of its kind to be devoted to these topics and consists mainly of original, recently obtained results.
This volume describes our intellectual path from the physics of complex sys tems to the science of artificial cognitive systems. It was exciting to discover that many of the concepts and methods which succeed in describing the self organizing phenomena of the physical world are relevant also for understand ing cognitive processes. Several nonlinear physicists have felt the fascination of such discovery in recent years. In this volume, we will limit our discussion to artificial cognitive systems, without attempting to model either the cognitive behaviour or the nervous structure of humans or animals. On the one hand, such artificial systems are important per se; on the other hand, it can be expected that their study will shed light on some general principles which are relevant also to biological cognitive systems. The main purpose of this volume is to show that nonlinear dynamical systems have several properties which make them particularly attractive for reaching some of the goals of artificial intelligence. The enthusiasm which was mentioned above must however be qualified by a critical consideration of the limitations of the dynamical systems approach. Understanding cognitive processes is a tremendous scientific challenge, and the achievements reached so far allow no single method to claim that it is the only valid one. In particular, the approach based upon nonlinear dynamical systems, which is our main topic, is still in an early stage of development."
The Italian school of Mathematical Analysis has long and glo rious traditions. In the last thirty years it owes very much to the scientific pre-eminence of Ennio De Giorgi, Professor of Mathemati cal Analysis at the Scuola Normale Superiore di Pisa. His fundamental theorems in Calculus of Variations, in Minimal Surfaces Theory, in Partial Differential Equations, in Axiomatic Set Theory as well as the fertility of his mind to discover both general mathematical structures and techniques which frame many different problems, and profound and meaningful examples which show the limits of a theory and give origin to new results and theories, makes him an absolute reference point for all Italian mathematicians, and a well-known and valued personage in the international mathematical world. We have been students of Ennio de Giorgi. Now, we are glad to present to him, together with all his collegues, friends and former students, these Essays of Mathematical Analysis written in his hon our on the occasion of his sixtieth birthday (February 8th, 1988), with our best wishes and our thanks for all he gave in the past and will give us in the future. We have added to the research papers of this book the text of a conversation with Ennio De Giorgi about the diffusion and the communication of science and, in particular, of Mathematics."
The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi?erentiable....Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the ?nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed, thatis, both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e?cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints..
Mathematics is playing an ever more important role in the physical and biologi cal sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modem as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and rein force the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematics Sci ences (AMS) series, which will focus on advanced textbooks and research-level monographs. v Preface This textbook introduces the basic concepts and results of mathematical control and system theory. Based on courses that I have taught during the last 15 years, it presents its subject in a self-contained and elementary fashion. It is geared primarily to an audience consisting of mathematically mature advanced undergraduate or beginning graduate students. In addi tion, it can be used by engineering students interested in a rigorous, proof oriented systems course that goes beyond the classical frequency-domain material and more applied courses."
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
The book of Professor Evtushenko describes both the theoretical foundations and the range of applications of many important methods for solving nonlinear programs. Particularly emphasized is their use for the solution of optimal control problems for ordinary differential equations. These methods were instrumented in a library of programs for an interactive system (DISO) at the Computing Center of the USSR Academy of Sciences, which can be used to solve a given complicated problem by a combination of appropriate methods in the interactive mode. Many examples show the strong as well the weak points of particular methods and illustrate the advantages gained by their combination. In fact, it is the central aim of the author to pOint out the necessity of using many techniques interactively, in order to solve more dif ficult problems. A noteworthy feature of the book for the Western reader is the frequently unorthodox analysis of many known methods in the great tradition of Russian mathematics. J. Stoer PREFACE Optimization methods are finding ever broader application in sci ence and engineering. Design engineers, automation and control systems specialists, physicists processing experimental data, eco nomists, as well as operations research specialists are beginning to employ them routinely in their work. The applications have in turn furthered vigorous development of computational techniques and engendered new directions of research. Practical implementa tion of many numerical methods of high computational complexity is now possible with the availability of high-speed large-memory digital computers."
The ASI on Nonlinear Model Based Process Control (August 10-20, 1997~ Antalya - Turkey) convened as a continuation of a previous ASI which was held in August 1994 in Antalya on Methods of Model Based Process Control in a more general context. In 1994, the contributions and discussions convincingly showed that industrial process control would increasingly rely on nonlinear model based control systems. Therefore, the idea for organizing this ASI was motivated by the success of the first one, the enthusiasm expressed by the scientific community for continuing contact, and the growing incentive for on-line control algorithms for nonlinear processes. This is due to tighter constraints and constantly changing performance objectives that now force the processes to be operated over a wider range of conditions compared to the past, and the fact that many of industrial operations are nonlinear in nature. The ASI intended to review in depth and in a global way the state-of-the-art in nonlinear model based control. The list of lecturers consisted of 12 eminent scientists leading the principal developments in the area, as well as industrial specialists experienced in the application of these techniques. Selected out of a large number of applications, there was a high quality, active audience composed of 59 students from 20 countries. Including family members accompanying the participants, the group formed a large body of92 persons. Out of the 71 participants, 11 were from industry.
Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.
This volume contains the lectures presented at the NATO Advanced Study Institute (ASI) on " Frontiers of Chemical Dynamics ", held in the Club AIda, Kerner, Turkey, from 5th September to 16th September 1994. The Kerner area, famous for its pristine beaches and craggy mountains provided an excellent atmosphere for an intellectually and socially active meeting. The first class facilities of Club AIda allowed the participants to concentrate on the scientific activities without any outside interferences and disturbances. The main objective of the meeting was to bring experts of chemical dynamics to discuss problems from both experimental and theoretical points of view. The organizing committee has helped a great deal to collect an impressive list of lecturers, although there were quite a number of other scientists whom we would have liked to invite. Unfortunately, the number of lecturers is limited and we had to leave out some of them. The selection of the lecturers from a very long list was a difficult process and those who are approached in our very first attempt were all known for giving very good lectures. The purpose of the ASI's are mainly educational even though they may be at a very high level and it is essential to keep in mind the pedagogical aspects of the meeting without sacrificing the scientific quality. This point was underlined several times in our communications with lecturers.
This book presents a unified view of modelling, simulation, and control of non linear dynamical systems using soft computing techniques and fractal theory. Our particular point of view is that modelling, simulation, and control are problems that cannot be considered apart, because they are intrinsically related in real world applications. Control of non-linear dynamical systems cannot be achieved if we don't have the appropriate model for the system. On the other hand, we know that complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors ( ranging from simple periodic orbits to chaotic strange attractors), so the problem of simulation and behavior identification is a very important one. Also, we want to automate each of these tasks because in this way it is more easy to solve a particular problem. A real world problem may require that we use modelling, simulation, and control, to achieve the desired level of performance needed for the particular application."
Lnear prediction theory and the related algorithms have matured to the point where they now form an integral part of many real-world adaptive systems. When it is necessary to extract information from a random process, we are frequently faced with the problem of analyzing and solving special systems of linear equations. In the general case these systems are overdetermined and may be characterized by additional properties, such as update and shift-invariance properties. Usually, one employs exact or approximate least-squares methods to solve the resulting class of linear equations. Mainly during the last decade, researchers in various fields have contributed techniques and nomenclature for this type of least-squares problem. This body of methods now constitutes what we call the theory of linear prediction. The immense interest that it has aroused clearly emerges from recent advances in processor technology, which provide the means to implement linear prediction algorithms, and to operate them in real time. The practical effect is the occurrence of a new class of high-performance adaptive systems for control, communications and system identification applications. This monograph presumes a background in discrete-time digital signal processing, including Z-transforms, and a basic knowledge of discrete-time random processes. One of the difficulties I have en countered while writing this book is that many engineers and computer scientists lack knowledge of fundamental mathematics and geometry."
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
One of the basic tenets of science is that deterministic systems are completely predictable-given the initial condition and the equations describing a system, the behavior of the system can be predicted 1 for all time. The discovery of chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is a deterministic system that exhibits random behavior. Though identified as a robust phenomenon only twenty years ago, chaos has almost certainly been encountered by scientists and engi neers many times during the last century only to be dismissed as physical noise. Chaos is such a wide-spread phenomenon that it has now been reported in virtually every scientific discipline: astronomy, biology, biophysics, chemistry, engineering, geology, mathematics, medicine, meteorology, plasmas, physics, and even the social sci ences. It is no coincidence that during the same two decades in which chaos has grown into an independent field of research, computers have permeated society. It is, in fact, the wide availability of inex pensive computing power that has spurred much of the research in chaotic dynamics. The reason is simple: the computer can calculate a solution of a nonlinear system. This is no small feat. Unlike lin ear systems, where closed-form solutions can be written in terms of the system's eigenvalues and eigenvectors, few nonlinear systems and virtually no chaotic systems possess closed-form solutions."
The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.
Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to * continuously and efficiently adapt a solution to a changing environment, * find a good trade-off between solution quality and adaptation cost, * find robust solutions whose quality is insensitive to changes in the environment, * find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems.The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to nonconvex optimization, these convex sets and generalized concave functions are used in the book's second part, where decision-making and optimization problems under uncertainty are investigated. Uncertainty in the problem data often cannot be avoided when dealing with practical problems. Errors occur in real-world data for a host of reasons. However, over the last thirty years, the fuzzy set approach has proved to be useful in these situations. It is this approach to optimization under uncertainty that is extensively used and studied in the second part of this book. Typically, the membership functions of fuzzy sets involved in such problems are neither concave nor convex. They are, however, often quasiconcave or concave in some generalized sense. This opens possibilities for application of results on generalized concavity to fuzzy optimization. Despite this obvious relation, applying the interface of these two areas has been limited to date. It is hoped that the combination of ideas and results from the field of generalized concavity on the one hand and fuzzy optimization on the other hand outlined and discussed in Generalized Concavity in Fuzzy Optimization and Decision Analysis will be of interest to both communities. Our aim is to broaden the classes of problems that the combination of these two areas can satisfactorily address and solve.
The book is devoted to systems with discontinuous control. The study of discontinuous dynamic systems is a multifacet problem which embraces mathematical, control theoretic and application aspects. Times and again, this problem has been approached by mathematicians, physicists and engineers, each profession treating it from its own positions. Interestingly, the results obtained by specialists in different disciplines have almost always had a significant effect upon the development of the control theory. It suffices to mention works on the theory of oscillations of discontinuous nonlinear systems, mathematical studies in ordinary differential equations with discontinuous righthand parts or variational problems in nonclassic statements. The unremitting interest to discontinuous control systems enhanced by their effective application to solution of problems most diverse in their physical nature and functional purpose is, in the author's opinion, a cogent argument in favour of the importance of this area of studies. It seems a useful effort to consider, from a control theoretic viewpoint, the mathematical and application aspects of the theory of discontinuous dynamic systems and determine their place within the scope of the present-day control theory. The first attempt was made by the author in 1975-1976 in his course on "The Theory of Discontinuous Dynamic Systems" and "The Theory of Variable Structure Systems" read to post-graduates at the University of Illinois, USA, and then presented in 1978-1979 at the seminars held in the Laboratory of Systems with Discontinous Control at the Institute of Control Sciences in Moscow.
Complementarity theory is a new domain in applied mathematics and is concerned with the study of complementarity problems. These problems represent a wide class of mathematical models related to optimization, game theory, economic engineering, mechanics, fluid mechanics, stochastic optimal control etc. The book is dedicated to the study of nonlinear complementarity problems by topological methods. Audience: Mathematicians, engineers, economists, specialists working in operations research and anybody interested in applied mathematics or in mathematical modeling.
As our title reveals, we focus on optimal control methods and applications relevant to linear dynamic economic systems in discrete-time variables. We deal only with discrete cases simply because economic data are available in discrete forms, hence realistic economic policies should be established in discrete-time structures. Though many books have been written on optimal control in engineering, we see few on discrete-type optimal control. More over, since economic models take slightly different forms than do engineer ing ones, we need a comprehensive, self-contained treatment of linear optimal control applicable to discrete-time economic systems. The present work is intended to fill this need from the standpoint of contemporary macroeconomic stabilization. The work is organized as follows. In Chapter 1 we demonstrate instru ment instability in an economic stabilization problem and thereby establish the motivation for our departure into the optimal control world. Chapter 2 provides fundamental concepts and propositions for controlling linear deterministic discrete-time systems, together with some economic applica tions and numerical methods. Our optimal control rules are in the form of feedback from known state variables of the preceding period. When state variables are not observable or are accessible only with observation errors, we must obtain appropriate proxies for these variables, which are called "observers" in deterministic cases or "filters" in stochastic circumstances. In Chapters 3 and 4, respectively, Luenberger observers and Kalman filters are discussed, developed, and applied in various directions. Noticing that a separation principle lies between observer (or filter) and controller (cf."
The English edition differs only slightly from the Russian original. The main struc tural difference is that all the material on the theory of finite noncooperative games has been collected in Chapter 2, with renumbering of the material of the remain ing chapters. New sections have been added in this chapter: devoted to general questions of equilibrium theory in nondegenerate games, subsections 3.9-3.17, by N.N. Vorob'ev, Jr.; and 4, by A.G. Chernyakov; and 5, by N.N. Vorob'ev, Jr., on the computational complexity of the process of finding equilibrium points in finite games. It should also be mentioned that subsections 3.12-3.14 in Chapter 1 were written by E.B. Yanovskaya especially for the Russian edition. The author regrets that the present edition does not reflect the important game-theoretical achievements presented in the splendid monographs by E. van Damme (on the refinement of equilibrium principles for finite games), as well as those by J.e. Harsanyi and R. Selten, and by W. Giith and B. Kalkofen (on equilibrium selection). When the Russian edition was being written, these direc tions in game theory had not yet attained their final form, which appeared only in quite recent monographs; the present author has had to resist the temptation of attempting to produce an elementary exposition of the new theories for the English edition; readers of this edition will find only brief mention of the new material." |
You may like...
Smart Grids from a Global Perspective…
Anne Beaulieu, Jaap De Wilde, …
Hardcover
Networks of Echoes - Imitation…
Bruce J. West, Malgorzata Turalska, …
Hardcover
|