![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This textbook examines a broad range of problems in science and engineering, describing key numerical methods applied to real life. The case studies presented are in such areas as data fitting, vehicle route planning and optimal control, scheduling and resource allocation, sensitivity calculations and worst-case analysis. Chapters are self-contained with exercises provided at the end of most sections. Nonlinear Optimization with Engineering Applications is ideal for self-study and classroom use in engineering courses at the senior undergraduate or graduate level. The book will also appeal to postdocs and advanced researchers interested in the development and use of optimization algorithms.
This book is devoted to one of the main questions of the theory of extremal prob lems, namely, to necessary and sufficient extremality conditions. It is intended mostly for mathematicians and also for all those who are interested in optimiza tion problems. The book may be useful for advanced students, post-graduated students, and researchers. The book consists of four chapters. In Chap. 1 we study the abstract minimization problem with constraints, which is often called the mathemati cal programming problem. Chapter 2 is devoted to one of the most important classes of extremal problems, the optimal control problem. In the third chapter we study one of the main objects of the calculus of variations, the integral quadratic form. In the concluding, fourth, chapter we study local properties of smooth nonlinear mappings in a neighborhood of an abnormal point. The problems which are studied in this book (of course, in addition to their extremal nature) are united by our main interest being in the study of the so called abnormal or degenerate problems. This is the main distinction of the present book from a large number of books devoted to theory of extremal problems, among which there are many excellent textbooks, and books such as, e.g., 13, 38, 59, 78, 82, 86, 101, 112, 119], to mention a few."
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications."
A cooperative system is defined to be multiple dynamic entities that share information or tasks to accomplish a common, though perhaps not singular, objective. Examples of cooperative control systems might include: robots operating within a manufacturing cell, unmanned aircraft in search and rescue operations or military surveillance and attack missions, arrays of micro satellites that form a distributed large aperture radar, employees operating within an organization, and software agents. The term entity is most often associated with vehicles capable of physical motion such as robots, automobiles, ships, and aircraft, but the definition extends to any entity concept that exhibits a time dependent behavior. Critical to cooperation is communication, which may be accomplished through active message passing or by passive observation. It is assumed that cooperation is being used to accomplish some common purpose that is greater than the purpose of each individual, but we recognize that the individual may have other objectives as well, perhaps due to being a member of other caucuses. This implies that cooperation may assume hierarchical forms as well. The decision-making processes (control) are typically thought to be distributed or decentralized to some degree. For if not, a cooperative system could always be modeled as a single entity. The level of cooperation may be indicated by the amount of information exchanged between entities. Cooperative systems may involve task sharing and can consist of heterogeneous entities. Mixed initiative systems are particularly interesting heterogeneous systems since they are composed of humans and machines. Finally, one is often interested in how cooperative systems perform under noisy or adversary conditions. In December 2000, the Air Force Research Laboratory and the University of Florida successfully hosted the first Workshop on Cooperative Control and Optimization in Gainesville, Florida. This book contains selected refereed papers summarizing the participants' research in control and optimization of cooperative systems. Audience: Faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In 1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
Finsler geometry is the most natural generalization of Riemannian geo- metry. It started in 1918 when P. Finsler [1] wrote his thesis on curves and surfaces in what he called generalized metric spaces. Studying the geometry of those spaces (which where named Finsler spaces or Finsler manifolds) became an area of active research. Many important results on the subject have been brought together in several monographs (cf. , H. Rund [3], G. Asanov [1], M. Matsumoto [6], A. Bejancu [8], P. L. Antonelli, R. S. Ingar- den and M. Matsumoto [1], M. Abate and G. Patrizio [1] and R. Miron [3]) . However, the present book is the first in the literature that is entirely de- voted to studying the geometry of submanifolds of a Finsler manifold. Our exposition is also different in many other respects. For example, we work on pseudo-Finsler manifolds where in general the Finsler metric is only non- degenerate (rather than on the particular case of Finsler manifolds where the metric is positive definite). This is absolutely necessary for physical and biological applications of the subject. Secondly, we combine in our study both the classical coordinate approach and the modern coordinate-free ap- proach. Thirdly, our pseudo-Finsler manifolds F = (M, M', F*) are such that the geometric objects under study are defined on an open submani- fold M' of the tangent bundle T M, where M' need not be equal to the entire TMo = TM\O(M).
The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience."
The use of the internet for commerce has spawned a variety of
auctions, marketplaces, and exchanges for trading everything from
bandwidth to books. Mechanisms for bidding agents, dynamic pricing,
and combinatorial bids are being implemented in support of
internet-based auctions, giving rise to new versions of
optimization and resource allocation models. This volume, a
collection of papers from an IMA "Hot Topics" workshop in internet
auctions, includes descriptions of real and proposed auctions,
complete with mathematical model formulations, theoretical results,
solution approaches, and computational studies.
The articles that comprise this distinguished annual volume for
the Advances in Mechanics and Mathematics series have been written
in honor of Gilbert Strang, a world renowned mathematician and
exceptional person. Written by leading experts in complementarity,
duality, global optimization, and quantum computations, this
collection reveals the beauty of these mathematical disciplines and
investigates recent developments in global optimization, nonconvex
and nonsmooth analysis, nonlinear programming, theoretical and
engineering mechanics, large scale computation, quantum algorithms
and computation, and information theory.
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables. The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included. This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
Written in a clear and concise manner this book provides a theoretical and application oriented analysis of deterministic scheduling problems arising in computer and manufacturing environments. Various scheduling problems are discussed where different problem parameters such as task processing times, urgency weights, arrival times, deadlines, precedence constraints, and processor speed factor are involved. Polynomial and exponential time optimization algorithms as well as approximation and heuristic approaches are presented and discussed. Moreover, resource-constrained, imprecise computation, flexible flow shop and dynamic job shop scheduling, as well as flexible manufacturing systems, are considered. An excellent analysis based on real-world applications with plenty of examples.
'Optimization Day' (OD) has been a series of annual mini-conferences in Aus tralia since 1994. The purpose of this series of events is to gather researchers in optimization and its related areas from Australia and their collaborators, in order to exchange new developments of optimization theories, methods and their applications. The first four OD mini-conferences were held in The Uni versity of Ballarat (1994), The University of New South Wales (1995), The University of Melbourne (1996) and Royal Melbourne Institute of Technology (1997), respectively. They were all on the eastern coast of Australia. The fifth mini-conference Optimization Days was held at the Centre for Ap plied Dynamics and Optimization (CADO), Department of Mathematics and Statistics, The University of Western Australia, Perth, from 29 to 30 June 1998. This is the first time the OD mini-conference has been held at the west ern coast of Australia. This fifth OD preceded the International Conference on Optimization: Techniques and Applications (ICOTA) held at Curtin Uni versity of Technology. Many participants attended both events. There were 28 participants in this year's mini-conference and 22 presentations in the mini conference. The presentations in this volume are refereed contributions based on papers presented at the fifth Optimization Days mini-conference. The volume is di vided into the following parts: Global Optimization, Nonsmooth Optimization, Optimization Methods and Applications."
In recent years there is a growing interest in generalized convex fu- tions and generalized monotone mappings among the researchers of - plied mathematics and other sciences. This is due to the fact that mathematical models with these functions are more suitable to describe problems of the real world than models using conventional convex and monotone functions. Generalized convexity and monotonicity are now considered as an independent branch of applied mathematics with a wide range of applications in mechanics, economics, engineering, finance and many others. The present volume contains 20 full length papers which reflect c- rent theoretical studies of generalized convexity and monotonicity, and numerous applications in optimization, variational inequalities, equil- rium problems etc. All these papers were refereed and carefully selected from invited talks and contributed talks that were presented at the 7th International Symposium on Generalized Convexity/Monotonicity held in Hanoi, Vietnam, August 27-31, 2002. This series of Symposia is or- nized by the Working Group on Generalized Convexity (WGGC) every 3 years and aims to promote and disseminate research on the field. The WGGC (http: //www.genconv.org) consists of more than 300 researchers coming from 36 countries
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.
Optimization is a rich and thriving mathematical discipline. The theory underlying current computational optimization techniques grows ever more sophisticated. The powerful and elegant language of convex analysis unifies much of this theory. The aim of this book is to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. It can serve as a teaching text, at roughly the level of first year graduate students. While the main body of the text is self-contained, each section concludes with an often extensive set of optional exercises. The new edition adds material on semismooth optimization, as well as several new proofs that will make this book even more self-contained.
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.
This text is meant to be an introduction to critical point theory and its ap- plications to differential equations. It is designed for graduate and postgrad- uate students as well as for specialists in the fields of differential equations, variational methods and optimization. Although related material can be the treatment here has the following main purposes: found in other books, * To present a survey on existing minimax theorems, * To give applications to elliptic differential equations in bounded do- mains and periodic second-order ordinary differential equations, * To consider the dual variational method for problems with continuous and discontinuous nonlinearities, * To present some elements of critical point theory for locally Lipschitz functionals and to give applications to fourth-order differential equa- tions with discontinuous nonlinearities, * To study homo clinic solutions of differential equations via the varia- tional method. The Contents of the book consist of seven chapters, each one divided into several sections. A bibliography is attached to the end of each chapter. In Chapter I, we present minimization theorems and the mountain-pass theorem of Ambrosetti-Rabinowitz and some of its extensions. The con- cept of differentiability of mappings in Banach spaces, the Fnkhet's and Gateaux derivatives, second-order derivatives and general minimization the- orems, variational principles of Ekeland [EkI] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais-Smale conditions and mountain-pass theorems are consid- ered.
Th e vari a t i on al s p li ne t heo ry w h ic h orig i na t es from th e w ell-kn own p ap er b y J. e . Hollid a y ( 1957) i s t od a y a we ll- deve lo pe d fi eld in a p pr o x - mat i o n t he o ry . T he ge ne ra l d efinition of s p l i nes in t he Hilb er t s pace , - i st ence , uniquen e s s , and ch ar a c t eriz a tion t he o re ms w ere obt ain ed a b o ut 35 ye a r s ago b y M . A t t ei a , P . J . Laur en t , a n d P . M. An selon e , bu t in r e cent y e a r s important n e w r esult s h a v e b e en ob t ain ed in th e a bst ract va r i a t i o n a l s p l i ne theor y .
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods). The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
This volume presents a wide range of medical applications that can utilize mathematical computing. This work grew out of a workshop on optimization which was held during the 2005 CIM Thematic Term on Optimization in Coimbra, Portugal. It provides an overview of the state-of-the-art in optimization in medicine and will serve as an excellent reference for researchers in the medical computing community and for those working in applied mathematics and optimization.
This monograph is devoted to recent progress in the turnpike t- ory. Turnpike properties are well known in mathematical economics. The term was ?rst coined by Samuelson who showed that an e?cient expanding economy would for most of the time be in the vicinity of a balanced equilibrium path (also called a von Neumann path) [78, 79]. These properties were studied by many authors for optimal trajec- ries of a Neumann-Gale model determined by a superlinear set-valued mapping. In the monograph we discuss a number of results conce- ing turnpike properties in the calculus of variations and optimal control which were obtained by the author in the last ten years. These results showthattheturnpikepropertiesareageneralphenomenonwhichholds for various classes of variational problems and optimal control problems. Turnpike properties are studied for optimal control problems on- nite time intervals [T ,T ] of the real line. Solutions of such problems 1 2 (trajectories) always depend on the time interval [T ,T ], an optimality 1 2 criterion which is usually determined by a cost function, and on data which is some initial conditions. In the turnpike theory we are int- ested in the structure of solutions of optimal problems. We study the behavior of solutions when an optimality criterion is ?xed while T ,T 1 2 andthedatavary. |
![]() ![]() You may like...
Observer-Based Fault Diagnosis and…
Dongsheng Du, Shengyuan Xu, …
Hardcover
R3,052
Discovery Miles 30 520
Laser-Driven Sources of High Energy…
Leonida Antonio Gizzi, Ralph Assmann, …
Hardcover
R3,046
Discovery Miles 30 460
The Physics of Inertial Fusion…
Stefano Atzeni, Jurgen Meyer-Ter-Vehn
Hardcover
R11,002
Discovery Miles 110 020
Stability, Control and Differential…
Alexander Tarasyev, Vyacheslav Maksimov, …
Hardcover
R7,484
Discovery Miles 74 840
Discrete-Time and Discrete-Space…
Kuize Zhang, Li Jun Zhang, …
Hardcover
R3,035
Discovery Miles 30 350
Control and Filtering of Fuzzy Systems…
Shanling Dong, Zheng-Guang Wu, …
Hardcover
R3,032
Discovery Miles 30 320
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
|