![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
The IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, held in Trondheim July 3-7, 1995, was the eighth of a series of IUTAM sponsored symposia which focus on the application of stochastic methods in mechanics. The previous meetings took place in Coventry, UK (1972), Sout'hampton, UK (1976), FrankfurtjOder, Germany (1982), Stockholm, Sweden (1984), Innsbruckjlgls, Austria (1987), Turin, Italy (1991) and San Antonio, Texas (1993). The symposium provided an extraordinary opportunity for scholars to meet and discuss recent advances in stochastic mechanics. The participants represented a wide range of expertise, from pure theoreticians to people primarily oriented toward applications. A significant achievement of the symposium was the very extensive discussions taking place over the whole range from highly theoretical questions to practical engineering applications. Several presentations also clearly demonstrated the substantial progress that has been achieved in recent years in terms of developing and implement ing stochastic analysis techniques for mechanical engineering systems. This aspect was further underpinned by specially invited extended lectures on computational stochastic mechanics, engineering applications of stochastic mechanics, and nonlinear active control. The symposium also reflected the very active and high-quality research taking place in the field of stochastic stability. Ten presentations were given on this topic ofa total of47 papers. A main conclusion that can be drawn from the proceedings of this symposium is that stochastic mechanics as a subject has reached great depth and width in both methodology and applicability.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.
This book contains translations of papers from the first volume of the new Russian-language journal published at the Sobolev Institute of Mathematics (Sibe- rian Branch of the Russian Academy of Sciences, Novosibirsk) since 1994. In 1994 the journal was titled Sibirskil Zhurnal Issledovaniya Operatsil. Since 1995 this journal has the title DiskretnYl Analiz i Issledovanie Operatsil (Discrete Analysis and Operations Research) The aim of this journal is to bring together research papers in different areas of discrete mathematics and computer science. The journal DiskretnYl Analiz i Issledovanie Operatsil covers the following fields: * discrete optimization * synthesis and complexity * discrete structures and * of control systems extremal problems * automata * combinatorics * graphs * control and reliability * game theory and its of discrete devices applications * mathematical models and * coding theory methods of decision making * scheduling theory * design and analysis * functional systems theory of algori thms Contributions presented to the journal can be original research papers and occasional survey articles of moderate length. A. D. Korshunov THE NUMBER OF DISTINCT SUBWORDS OF FIXED LENGTH IN THE MORSE-HEDLUND SEQUENCEt) S. V. Avgustinovich An exact formula is obtained for the number of distinct subwords of length n in the Morse-Hedlund sequence [1), i. e. , the sequence in which the initial member is 0 and subsequent members are produced by unlimited application of the operation of substituting 01 for 0 and 10 for 1.
Many nonlinear problems in physics, engineering, biology and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis.
In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi- neering, have shown the need of new mathematical models for study- ing the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the develop- ment of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advan- tage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Net- works, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situa- tions where there are concurrent objectives, so that Vector Optimiza- tion (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above - mentioned drawback of being obliged to assume the exis- tence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research.
This book is a revision of Random Point Processes written by D. L. Snyder and published by John Wiley and Sons in 1975. More emphasis is given to point processes on multidimensional spaces, especially to pro cesses in two dimensions. This reflects the tremendous increase that has taken place in the use of point-process models for the description of data from which images of objects of interest are formed in a wide variety of scientific and engineering disciplines. A new chapter, Translated Poisson Processes, has been added, and several of the chapters of the fIrst edition have been modifIed to accommodate this new material. Some parts of the fIrst edition have been deleted to make room. Chapter 7 of the fIrst edition, which was about general marked point-processes, has been eliminated, but much of the material appears elsewhere in the new text. With some re luctance, we concluded it necessary to eliminate the topic of hypothesis testing for point-process models. Much of the material of the fIrst edition was motivated by the use of point-process models in applications at the Biomedical Computer Labo ratory of Washington University, as is evident from the following excerpt from the Preface to the first edition. "It was Jerome R. Cox, Jr. , founder and [1974] director of Washington University's Biomedical Computer Laboratory, who ftrst interested me [D. L. S.
Give, and it shall be given unto you. ST. LUKE, VI, 38. The book is based on several courses of lectures on control theory and appli cations which were delivered by the authors for a number of years at Moscow Electronics and Mathematics University. The book, originally written in Rus sian, was first published by Vysshaya Shkola (Higher School) Publishing House in Moscow in 1989. In preparing a new edition of the book we planned to make only minor changes in the text. However, we soon realized that we like many scholars working in control theory had learned many new things and had had many new insights into control theory and its applications since the book was first published. Therefore, we rewrote the book especially for the English edition. So, this is substantially a new book with many new topics. The book consists of an introduction and four parts. Part One deals with the fundamentals of modern stability theory: general results concerning stability and instability, sufficient conditions for the stability of linear systems, methods for determining the stability or instability of systems of various type, theorems on stability under random disturbances."
The purpose of this book is to acquaint the reader with the developments in bilinear systems theory and its applications. Bilinear systems can be used to represent a wide range of physical, chemical, biological, and social systems, as well as manufacturing processes, which cannot be effectively modeled under the assumption of linearity. This book provides a unified approach for the identification and control of nonlinear complex objects that can be transformed into bilinear systems, with a focus on the control of open physical processes functioning in a non-equilibrium mode. The material is intended for graduate students, researchers, and specialists engaged in the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, physical information science, mathematics, and engineering.
This book is concerned with topological and differential properties of multivalued mappings and marginal functions. Beside this applica- tions to the sensitivity analysis of optimization problems, in particular nonlinear programming problems with perturbations, are studied. The elaborated methods are primarily obtained by theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov. Con- sequently, a significant part of the presented results have never been published in English before. Based on the use of directional derivatives as a key tool in studying nonsmooth functions and multifunctions, these results can be considered as a further development of quasidifferential calculus created by Demyanov and Rubinov. In contrast to other research in this field, especially the recent publica- tion by Bonnans and Shapiro, this book analyses properties of marginal functions associated with optimization problems under quite general con- straints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume.
A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, eco momics and biology, have an irregular structure: classical variational proce dures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem ofthe systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treat ment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems."
Functional Analysis is primarily concerned with the structure of infinite dimensional vector spaces and the transformations, which are frequently called operators, between such spaces. The elements of these vector spaces are usually functions with certain properties, which map one set into another. Functional analysis became one of the success stories of mathematics in the 20th century, in the search for generality and unification. Although it remains a very attractive field of pure mathematics, it has also proven to be an indispensable and powerful tool for physicists, engineers and economists involved in research and development, for helping them understand their subject in depth. This book is designed to provide the reader with a solid foundation of almost the entire spectrum of functional analysis, upon which each reader may build their own special structure, tailored to his or her purposes. The only prerequisite is the familiarity with the classical analysis of standard level. The book then provides a smooth but fast-paced systematical passage to the required advanced mathematical level, without sacrificing the mathematical rigor with almost no reference to outside materials to offering also a complete coverage of this discipline. We believe that the latter is one of the unique features of this book. None of the books in literature cover that much material, starting from a rather modest mathematical level. Functional Analysis will be primarily of interest to graduate students in applied mathematics, in all branches of engineering, in physical and economical sciences and to those working in research and development in industry and research institutes.
No pleasure lasts long unless there is variety in it. Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
This book by two of the foremost researchers and writers in the field is the first part of a treatise that covers the subject in breadth and depth, paying special attention to the historical origins of the theory. Both individually and collectively these volumes have already become standard references.
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].
There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida."
Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines presenting both the background of the subject area and the techniques for solving the problems. "
This is the 9th volume in Avner Friedman's collection of Mathematics in Industrial problems. This book aims to foster interaction between industry and mathematics at the "grass roots" level of specific problems. The problems presented in this book arise from models developed by industrial scientists engaged in research and development of new or improved products. The topics explored in this volume include diffusion in porous media and in rubber/glass transition, coating flows, solvation of molecules, semiconductor processing, optoelectronics, photographic images, density-functional theory, sphere packing, performance evaluation, causal networks, electrical well logging, general positioning system, sensor management, pursuit-evasion algorithms, and nonlinear viscoelasticity. Open problems and references are incorporated into most of the chapters. The final chapter contains some solutions to problems raised in earlier volumes.
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
At present, in order to resolve problems of ecology and to save mineral resources for future population generations, it is quite necessary to know how to maintain nature arrangement in an efficient way. It is possible to achieve a rational nature arrangement when analyzing solutions to problems concerned with optimal control of distributed systems and with optimization of modes in which main ground medium processes are functioning (motion of liquids, generation of temperature fields, mechanical deformation of multicomponent media). Such analysis becomes even more difficult because of heterogeneity of the region that is closest to the Earth surface, and thin inclusions/cracks in it exert their essential influence onto a state and development of the mentioned processes, especially in the cases of mining. Many researchers, for instance, A.N. Tikhonov - A.A. Samarsky [121], L. Luckner - W.M. Shestakow [65], Tien-Mo Shih, K.L. Johnson [47], E. Sanchez-Palencia [94] and others stress that it is necessary to consider how thin inclusions/cracks exert their influences onto development of these processes, while such inclusions differ in characteristics from main media to a considerable extent (moisture permeability, permeability to heat, bulk density or shear strength may be mentioned). Xll An influence exerted from thin interlayers onto examined processes is taken into account sufficiently adequately by means of various constraints, namely, by the conjugation conditions [4, 8, 10, 15, 17-20, 22-26, 38, 44, 47, 52, 53, 68, 76, 77, 81, 83, 84, 90, 95, 96-100, 112-114, 117, 123].
This book represents a thoroughly comprehensive treatment of computational intelligence from an electrical power system engineer's perspective. Thorough, well-organised and up-to-date, it examines in some detail all the important aspects of this very exciting and rapidly emerging technology, including: expert systems, fuzzy logic, artificial neural networks, genetic algorithms and hybrid systems. Written in a concise and flowing manner, by experts in the area of electrical power systems who have had many years of experience in the application of computational intelligence for solving many complex and onerous power system problems, this book is ideal for professional engineers and postgraduate students entering this exciting field. This book would also provide a good foundation for senior undergraduate students entering into their final year of study.
A cooperative system is a collection of dynamical objects, which communicate and cooperate in order to achieve a common or shared objective. The cooperation of entities is achieved through communication; either explicitly by message passing, or implicitly via observation of another entities' state. As in natural systems, cooperation may assume a hierarchical form and the control processes may be distributed or decentralized. Due to the dynamic nature of individuals and the interaction between them, the problems associated with cooperative systems typically involve many uncertainties. Moreover, in many cases cooperative systems are required to operate in a noisy or hazardous environment, which creates special challenges for designing the control process. During the last decades, considerable progress has been observed in all aspects regarding the study of cooperative systems including modeling of cooperative systems, resource allocation, discrete event driven dynamical control, continuous and hybrid dynamical control, and theory of the interaction of information, control, and hierarchy. Solution methods have been proposed using control and optimization approaches, emergent rule based techniques, game theoretic and team theoretic approaches. Measures of performance have been suggested that include the effects of hierarchies and information structures on solutions, performance bounds, concepts of convergence and stability, and problem complexity. These and other topics were discusses at the Second Annual Conference on Cooperative Control and Optimization in Gainesville, Florida. Refereed papers written by selected conference participants from the conference are gathered in this volume, which presents problem models, theoretical results, and algorithms for various aspects of cooperative control. Audience: The book is addressed to faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
Advances in Mechanics and Mathematics (AMMA) is intended to bridge
the gap by providing multi-disciplinary publications. This volume,
AMMA 2002, includes two parts with three articles by four subject
experts. Part 1 deals with nonsmooth static and dynamic systems. A
systematic mathematical theory for multibody dynamics with
unilateral and frictional constraints and a brief introduction to
hemivariational inequalities together with some new developments in
nonsmooth semi-linear elliptic boundary value problems are
presented. Part 2 provides a comprehensive introduction and the
latest research on dendritic growth in fluid mechanics, one of the
most profound and fundamental subjects in the area of interfacial
pattern formation, a commonly observed phenomenon in crystal growth
and solidification processes.
The problems of interrelation between human economics and natural environment include scientific, technical, economic, demographic, social, political and other aspects that are studied by scientists of many specialities. One of the important aspects in scientific study of environmental and ecological problems is the development of mathematical and computer tools for rational management of economics and environment. This book introduces a wide range of mathematical models in economics, ecology and environmental sciences to a general mathematical audience with no in-depth experience in this specific area. Areas covered are: controlled economic growth and technological development, world dynamics, environmental impact, resource extraction, air and water pollution propagation, ecological population dynamics and exploitation. A variety of known models are considered, from classical ones (Cobb Douglass production function, Leontief input-output analysis, Solow models of economic dynamics, Verhulst-Pearl and Lotka-Volterra models of population dynamics, and others) to the models of world dynamics and the models of water contamination propagation used after Chemobyl nuclear catastrophe. Special attention is given to modelling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Xlll XIV Construction of Mathematical Models ..."
In this book a general topological construction of extension is proposed for problems of attainability in topological spaces under perturbation of a system of constraints. This construction is realized in a special class of generalized elements defined as finitely additive measures. A version of the method of programmed iterations is constructed. This version realizes multi-valued control quasistrategies, which guarantees the solution of the control problem that consists in guidance to a given set under observation of phase constraints. Audience: The book will be of interest to researchers, and graduate students in the field of optimal control, mathematical systems theory, measure and integration, functional analysis, and general topology. |
![]() ![]() You may like...
The Berge Equilibrium: A Game-Theoretic…
Mindia E. Salukvadze, Vladislav I. Zhukovskiy
Hardcover
R3,397
Discovery Miles 33 970
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,324
Discovery Miles 63 240
Stochastic Optimal Control in Infinite…
Giorgio Fabbri, Fausto Gozzi, …
Hardcover
R6,564
Discovery Miles 65 640
Numerical Engineering Optimization…
Andreas Oechsner, Resam Makvandi
Hardcover
R1,535
Discovery Miles 15 350
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,916
Discovery Miles 29 160
Nonlinear Industrial Control Systems…
Michael J. Grimble, Pawel Majecki
Hardcover
R6,491
Discovery Miles 64 910
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,924
Discovery Miles 29 240
|