![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
In this authoritative and comprehensive volume, Claude Bardos and Andrei Fursikov have drawn together an impressive array of international contributors to present important recent results and perspectives in this area. The main subjects that appear here relate largely to mathematical aspects of the theory but some novel schemes used in applied mathematics are also presented. Various topics from control theory, including Navier-Stokes equations, are covered.
Put together by two top researchers in the Far East, this text examines Markov Decision Processes - also called stochastic dynamic programming - and their applications in the optimal control of discrete event systems, optimal replacement, and optimal allocations in sequential online auctions. This dynamic new book offers fresh applications of MDPs in areas such as the control of discrete event systems and the optimal allocations in sequential online auctions.
"Each chapter contains a well-written introduction and notes. They include the author's deep insights on the subject matter and provide historical comments and guidance to related literature. This book may well become an important milestone in the literature of optimal control." -Mathematical Reviews "Thanks to a great effort to be self-contained, [this book] renders accessibly the subject to a wide audience. Therefore, it is recommended to all researchers and professionals interested in Optimal Control and its engineering and economic applications. It can serve as an excellent textbook for graduate courses in Optimal Control (with special emphasis on Nonsmooth Analysis)." -Automatica
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems, and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties, empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, "... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces". Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.
This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro (Italy) in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. The topics discussed are transport equations for nonsmooth vector fields, homogenization, viscosity methods for the infinite Laplacian, weak KAM theory and geometrical aspects of symmetrization. A historical overview of all CIME courses on the calculus of variations and partial differential equations is contributed by Elvira Mascolo.
Fourier analysis has many scientific applications - in physics,
number theory, combinatorics, signal processing, probability
theory, statistics, option pricing, cryptography, acoustics,
oceanography, optics and diffraction, geometry, and other areas. In
signal processing and related fields, Fourier analysis is typically
thought of as decomposing a signal into its component frequencies
and their amplitudes.
The papers collected in this volume are contributions to the 43rd session of the Seminaire de mathematiques superieures (SMS) on "Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology." This session took place at the Universite de Montreal in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger, our administrative assistant, for her help with the organi- tion and Mr. Andre Montpetit, our technical editor, for his help in the preparation of the volume."
The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.
A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry," i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.
The role of singular trajectories in control theory is analysed in this volume that contains about 60 exercises and problems. A section is devoted to the applications of singular trajectories to the optimisation of batch reactors. The theoretical part based on the Martinet case concerns the singularity analysis of singular trajectories in sub-Riemannian geometry. An algorithm is given to evaluate conjugate points and a final chapter discusses open problems. The volume will interest mathematicians and engineers.
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems. In the second edition, some material has been expanded for better comprehension.
These lecture notes by very authoritative scientists survey recent
advances of mathematics driven by industrial application showing
not only how mathematics is applied to industry but also how
mathematics has drawn benefit from interaction with real-word
problems.
While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.
A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. * Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods * Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each * Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures * Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.
This is the first book offering an application of regular variation to the qualitative theory of differential equations. The notion of regular variation, introduced by Karamata (1930), extended by several scientists, most significantly de Haan (1970), is a powerful tool in studying asymptotics in various branches of analysis and in probability theory. Here, some asymptotic properties (including non-oscillation) of solutions of second order linear and of some non-linear equations are proved by means of a new method that the well-developed theory of regular variation has yielded. A good graduate course both in real analysis and in differential equations suffices for understanding the book.
The aim of these lecture notes is to give an essentially self-contained introduction to the basic regularity theory for energy minimizing maps, including recent developments concerning the structure of the singular set and asymptotics on approach to the singular set. Specialized knowledge in partial differential equations or the geometric calculus of variations is not required; a good general background in mathematical analysis would be adequate preparation.
This volume collects together some of the papers presented at the Seventh French-German Conference on Optimization held at Dijon (France) in 1994. About 150 scientists, mainly from Germany and France, but also from other countries, met at Dijon (June 27 - July 2, 1994) and discussed recent develop- ments in the field of optimization. 87 lectures were delivered, covering a large part of theoretical and practical aspects of optimization. Most of the talks were scheduled in two parallel sessions, according to topics such as optimization and variational inequalities, sensivity and stability analysis, control theory, vector optimization, convex and nonsmooth analysis. This conference was the seventh in a series which started in 1980. Proceedings of the previous French-German Conferences on Optimization have been published as follows: First Conference (Oberwolfach 1980): Optimization and Optimal Control, edited by A. Auslender, W. Oettli and J. Stoer (Lectures Notes in Con- trol and Information Sciences, 30) Springer-Verlag, Berlin and Heidelberg, 1981. Second Conference (Confolant, 1981): Optimization, edited by J.B. Hiriart- Urruty, W. Oettli and J. Stoer (Lectures Notes in Pure and Applied Math- ematics, 86) Marcel Dekker, New York and Basel, 1983. Third Conference (Luminy, 1984): Third Franco-German Conference in Optimization, edited by C. LemarEkhal. Institut National de Recherche en Informatique et en Automatique, Rocquencourt, 1984 (ISBN 2-7261- 0402-9). Fourth Conference (Irsee, 1986): Trends in Mathematical Optimization, edited fy K. Hoffmann, J.B. Hiriart-Urruty, C. Lemarechal and J. Zowe (International Series of Numerical Mathematics, 84) Birkhauser Verlag, Basel and Boston, 1988.
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author's previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: * inverted controlled pendulum; * Nicholson's blowflies equation; * predator-prey relationships; * epidemic development; and * mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.
"This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book." --MATHSCINET
The purpose of the Conference on Optimal Control of Partial Differential Equations was to bring together leading experts in this field and to exchange ideas and information about recent advances in control theory connected with partial differential equations. The papers collected in these Proceedings are mainly research papers in which new results are presented. Out of a broad spectrum of topics the problem of exact controllability played a central role, and also shape control was given some special attention. Nonlinear problems were mainly treated under the aspect of optimality whereas identification problems and also numerical aspects were considered only treated marginally.
This monograph considers the integration of knowledge-based soft control with hard control algorithms. As a specific application, the development of a knowledge-based controller for robotic manipulators is addressed. Servo control alone is known to be inadequate for nonlinear and high-speed processes including robots. Furthermore, knowledge-based control such as fuzzy control, when directly included in the servo loop, has produced insatisfactory performance in research robots. These considerations, along with the fact that human experts can very effectively perform tuning functions in process controllers, form the basis for the control structure proposed in this work. The book is suitable for students, researchers and practising professionals in the fields of Automatic Control and Robotics. The material is presented in simple and clear language with sufficient introductory information. Someone with an undergraduate knowledge in dynamics and control should be able to use the book without any difficulty.
This volume consists of six essays that develop and/or apply "rational expectations equilibrium inventory models" to study the time series behavior of production, sales, prices, and inventories at the industry level. By "rational expectations equilibrium inventory model" I mean the extension of the inventory model of Holt, Modigliani, Muth, and Simon (1960) to account for: (i) discounting, (ii) infinite horizon planning, (iii) observed and unobserved by the "econometrician" stochastic shocks in the production, factor adjustment, storage, and backorders management processes of firms, as well as in the demand they face for their products; and (iv) rational expectations. As is well known according to the Holt et al. model firms hold inventories in order to: (a) smooth production, (b) smooth production changes, and (c) avoid stockouts. Following the work of Zabel (1972), Maccini (1976), Reagan (1982), and Reagan and Weitzman (1982), Blinder (1982) laid the foundations of the rational expectations equilibrium inventory model. To the three reasons for holding inventories in the model of Holt et al. was added (d) optimal pricing. Moreover, the popular "accelerator" or "partial adjustment" inventory behavior equation of Lovell (1961) received its microfoundations and thus overcame the "Lucas critique of econometric modelling.
This monograph is sums up the development of singular system theory and provides the control circle with a systematic theory of the system. It focuses on the analysis and synthesis of singular control systems. Its distinctive features include systematic discussion of controllabilities and observabilities, design of singular or normal observers and compensators with their structural stability, systems analysis via transfer matrix, and studies of discrete-time singular systems. Some acquaintance with linear algebra and linear systems is assumed. Prospective readers are graduate students, scientists, and other researchers in control theory and its applications. Much of the material in the book is new. |
You may like...
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
Methods of Nonlinear Analysis…
Pavel Drabek, Jaroslav Milota
Hardcover
R3,017
Discovery Miles 30 170
Solvability, Regularity, and Optimal…
Pierluigi Colli, Angelo Favini, …
Hardcover
R3,437
Discovery Miles 34 370
Degree Theory in Analysis and…
Irene Fonseca, Wilfrid Gangbo
Hardcover
R4,288
Discovery Miles 42 880
Nonsmooth Optimization and Its…
Seyedehsomayeh Hosseini, Boris S. Mordukhovich, …
Hardcover
R2,653
Discovery Miles 26 530
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,699
Discovery Miles 26 990
Stochastic Optimal Control in Infinite…
Giorgio Fabbri, Fausto Gozzi, …
Hardcover
R6,052
Discovery Miles 60 520
Variational Analysis of Regular Mappings…
Alexander D. Ioffe
Hardcover
R4,284
Discovery Miles 42 840
|