![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables. The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included. This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
Written in a clear and concise manner this book provides a theoretical and application oriented analysis of deterministic scheduling problems arising in computer and manufacturing environments. Various scheduling problems are discussed where different problem parameters such as task processing times, urgency weights, arrival times, deadlines, precedence constraints, and processor speed factor are involved. Polynomial and exponential time optimization algorithms as well as approximation and heuristic approaches are presented and discussed. Moreover, resource-constrained, imprecise computation, flexible flow shop and dynamic job shop scheduling, as well as flexible manufacturing systems, are considered. An excellent analysis based on real-world applications with plenty of examples.
Advanced Design Problems in Aerospace Engineering, Volume 1: Advanced Aerospace Systems presents six authoritative lectures on the use of mathematics in the conceptual design of various types of aircraft and spacecraft. It covers the following topics: design of rocket-powered orbital spacecraft (Miele/Mancuso), design of Moon missions (Miele/Mancuso), design of Mars missions (Miele/Wang), design of an experimental guidance system with a perspective flight path display (Sachs), neighboring vehicle design for a two-stage launch vehicle (Well), and controller design for a flexible aircraft (Hanel/Well). This is a reference book of interest to engineers and scientists working in aerospace engineering and related topics.
Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial."
This volume contains, in part, a selection of papers presented at the sixth Australian Optimization Day Miniconference (Ballarat, 16 July 1999), and the Special Sessions on Nonlinear Dynamics and Optimization and Operations Re search - Methods and Applications, which were held in Melbourne, July 11-15 1999 as a part of the Joint Meeting of the American Mathematical Society and Australian Mathematical Society. The editors have strived to present both con tributed papers and survey style papers as a more interesting mix for readers. Some participants from the meetings mentioned above have responded to this approach by preparing survey and 'semi-survey' papers, based on presented lectures. Contributed paper, which contain new and interesting results, are also included. The fields of the presented papers are very large as demonstrated by the following selection of key words from selected papers in this volume: * optimal control, stochastic optimal control, MATLAB, economic models, implicit constraints, Bellman principle, Markov process, decision-making under uncertainty, risk aversion, dynamic programming, optimal value function. * emergent computation, complexity, traveling salesman problem, signal estimation, neural networks, time congestion, teletraffic. * gap functions, nonsmooth variational inequalities, derivative-free algo rithm, Newton's method. * auxiliary function, generalized penalty function, modified Lagrange func tion. * convexity, quasiconvexity, abstract convexity.
Recent revolutions in the world of finance have created a need for the expertise of research mathematicians in solving problems. The articles in this volume are based on recent research in methods in mathematical finance.
This book is devoted to one of the main questions of the theory of extremal prob lems, namely, to necessary and sufficient extremality conditions. It is intended mostly for mathematicians and also for all those who are interested in optimiza tion problems. The book may be useful for advanced students, post-graduated students, and researchers. The book consists of four chapters. In Chap. 1 we study the abstract minimization problem with constraints, which is often called the mathemati cal programming problem. Chapter 2 is devoted to one of the most important classes of extremal problems, the optimal control problem. In the third chapter we study one of the main objects of the calculus of variations, the integral quadratic form. In the concluding, fourth, chapter we study local properties of smooth nonlinear mappings in a neighborhood of an abnormal point. The problems which are studied in this book (of course, in addition to their extremal nature) are united by our main interest being in the study of the so called abnormal or degenerate problems. This is the main distinction of the present book from a large number of books devoted to theory of extremal problems, among which there are many excellent textbooks, and books such as, e.g., 13, 38, 59, 78, 82, 86, 101, 112, 119], to mention a few."
The material of the present book has been used for graduate-level courses at the University of Ia i during the past ten years. It is a revised version of a book which appeared in Romanian in 1993 with the Publishing House of the Romanian Academy. The book focuses on classical boundary value problems for the principal equations of mathematical physics: second order elliptic equations (the Poisson equations), heat equations and wave equations. The existence theory of second order elliptic boundary value problems was a great challenge for nineteenth century mathematics and its development was marked by two decisive steps. Undoubtedly, the first one was the Fredholm proof in 1900 of the existence of solutions to Dirichlet and Neumann problems, which represented a triumph of the classical theory of partial differential equations. The second step is due to S. 1. Sobolev (1937) who introduced the concept of weak solution in partial differential equations and inaugurated the modern theory of boundary value problems. The classical theory which is a product ofthe nineteenth century, is concerned with smooth (continuously differentiable) sollutions and its methods rely on classical analysis and in particular on potential theory. The modern theory concerns distributional (weak) solutions and relies on analysis of Sob ole v spaces and functional methods. The same distinction is valid for the boundary value problems associated with heat and wave equations. Both aspects of the theory are present in this book though it is not exhaustive in any sense.
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph 19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered."
This textbook examines a broad range of problems in science and engineering, describing key numerical methods applied to real life. The case studies presented are in such areas as data fitting, vehicle route planning and optimal control, scheduling and resource allocation, sensitivity calculations and worst-case analysis. Chapters are self-contained with exercises provided at the end of most sections. Nonlinear Optimization with Engineering Applications is ideal for self-study and classroom use in engineering courses at the senior undergraduate or graduate level. The book will also appeal to postdocs and advanced researchers interested in the development and use of optimization algorithms.
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications."
A cooperative system is defined to be multiple dynamic entities that share information or tasks to accomplish a common, though perhaps not singular, objective. Examples of cooperative control systems might include: robots operating within a manufacturing cell, unmanned aircraft in search and rescue operations or military surveillance and attack missions, arrays of micro satellites that form a distributed large aperture radar, employees operating within an organization, and software agents. The term entity is most often associated with vehicles capable of physical motion such as robots, automobiles, ships, and aircraft, but the definition extends to any entity concept that exhibits a time dependent behavior. Critical to cooperation is communication, which may be accomplished through active message passing or by passive observation. It is assumed that cooperation is being used to accomplish some common purpose that is greater than the purpose of each individual, but we recognize that the individual may have other objectives as well, perhaps due to being a member of other caucuses. This implies that cooperation may assume hierarchical forms as well. The decision-making processes (control) are typically thought to be distributed or decentralized to some degree. For if not, a cooperative system could always be modeled as a single entity. The level of cooperation may be indicated by the amount of information exchanged between entities. Cooperative systems may involve task sharing and can consist of heterogeneous entities. Mixed initiative systems are particularly interesting heterogeneous systems since they are composed of humans and machines. Finally, one is often interested in how cooperative systems perform under noisy or adversary conditions. In December 2000, the Air Force Research Laboratory and the University of Florida successfully hosted the first Workshop on Cooperative Control and Optimization in Gainesville, Florida. This book contains selected refereed papers summarizing the participants' research in control and optimization of cooperative systems. Audience: Faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
The use of the internet for commerce has spawned a variety of
auctions, marketplaces, and exchanges for trading everything from
bandwidth to books. Mechanisms for bidding agents, dynamic pricing,
and combinatorial bids are being implemented in support of
internet-based auctions, giving rise to new versions of
optimization and resource allocation models. This volume, a
collection of papers from an IMA "Hot Topics" workshop in internet
auctions, includes descriptions of real and proposed auctions,
complete with mathematical model formulations, theoretical results,
solution approaches, and computational studies.
Finsler geometry is the most natural generalization of Riemannian geo- metry. It started in 1918 when P. Finsler [1] wrote his thesis on curves and surfaces in what he called generalized metric spaces. Studying the geometry of those spaces (which where named Finsler spaces or Finsler manifolds) became an area of active research. Many important results on the subject have been brought together in several monographs (cf. , H. Rund [3], G. Asanov [1], M. Matsumoto [6], A. Bejancu [8], P. L. Antonelli, R. S. Ingar- den and M. Matsumoto [1], M. Abate and G. Patrizio [1] and R. Miron [3]) . However, the present book is the first in the literature that is entirely de- voted to studying the geometry of submanifolds of a Finsler manifold. Our exposition is also different in many other respects. For example, we work on pseudo-Finsler manifolds where in general the Finsler metric is only non- degenerate (rather than on the particular case of Finsler manifolds where the metric is positive definite). This is absolutely necessary for physical and biological applications of the subject. Secondly, we combine in our study both the classical coordinate approach and the modern coordinate-free ap- proach. Thirdly, our pseudo-Finsler manifolds F = (M, M', F*) are such that the geometric objects under study are defined on an open submani- fold M' of the tangent bundle T M, where M' need not be equal to the entire TMo = TM\O(M).
The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience."
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In 1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.
In recent years there is a growing interest in generalized convex fu- tions and generalized monotone mappings among the researchers of - plied mathematics and other sciences. This is due to the fact that mathematical models with these functions are more suitable to describe problems of the real world than models using conventional convex and monotone functions. Generalized convexity and monotonicity are now considered as an independent branch of applied mathematics with a wide range of applications in mechanics, economics, engineering, finance and many others. The present volume contains 20 full length papers which reflect c- rent theoretical studies of generalized convexity and monotonicity, and numerous applications in optimization, variational inequalities, equil- rium problems etc. All these papers were refereed and carefully selected from invited talks and contributed talks that were presented at the 7th International Symposium on Generalized Convexity/Monotonicity held in Hanoi, Vietnam, August 27-31, 2002. This series of Symposia is or- nized by the Working Group on Generalized Convexity (WGGC) every 3 years and aims to promote and disseminate research on the field. The WGGC (http: //www.genconv.org) consists of more than 300 researchers coming from 36 countries
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.
Th e vari a t i on al s p li ne t heo ry w h ic h orig i na t es from th e w ell-kn own p ap er b y J. e . Hollid a y ( 1957) i s t od a y a we ll- deve lo pe d fi eld in a p pr o x - mat i o n t he o ry . T he ge ne ra l d efinition of s p l i nes in t he Hilb er t s pace , - i st ence , uniquen e s s , and ch ar a c t eriz a tion t he o re ms w ere obt ain ed a b o ut 35 ye a r s ago b y M . A t t ei a , P . J . Laur en t , a n d P . M. An selon e , bu t in r e cent y e a r s important n e w r esult s h a v e b e en ob t ain ed in th e a bst ract va r i a t i o n a l s p l i ne theor y .
This text is meant to be an introduction to critical point theory and its ap- plications to differential equations. It is designed for graduate and postgrad- uate students as well as for specialists in the fields of differential equations, variational methods and optimization. Although related material can be the treatment here has the following main purposes: found in other books, * To present a survey on existing minimax theorems, * To give applications to elliptic differential equations in bounded do- mains and periodic second-order ordinary differential equations, * To consider the dual variational method for problems with continuous and discontinuous nonlinearities, * To present some elements of critical point theory for locally Lipschitz functionals and to give applications to fourth-order differential equa- tions with discontinuous nonlinearities, * To study homo clinic solutions of differential equations via the varia- tional method. The Contents of the book consist of seven chapters, each one divided into several sections. A bibliography is attached to the end of each chapter. In Chapter I, we present minimization theorems and the mountain-pass theorem of Ambrosetti-Rabinowitz and some of its extensions. The con- cept of differentiability of mappings in Banach spaces, the Fnkhet's and Gateaux derivatives, second-order derivatives and general minimization the- orems, variational principles of Ekeland [EkI] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais-Smale conditions and mountain-pass theorems are consid- ered.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists. |
You may like...
Degree Theory in Analysis and…
Irene Fonseca, Wilfrid Gangbo
Hardcover
R4,288
Discovery Miles 42 880
Optimal Trajectory Tracking of Nonlinear…
Jakob Loeber
Hardcover
Discrete-Time Higher Order Sliding Mode…
Nalin Kumar Sharma, Janardhanan Sivaramakrishnan
Hardcover
R2,653
Discovery Miles 26 530
Delays and Networked Control Systems
Alexandre Seuret, Laurentiu Hetel, …
Hardcover
Nonsmooth Optimization and Its…
Seyedehsomayeh Hosseini, Boris S. Mordukhovich, …
Hardcover
R2,653
Discovery Miles 26 530
Vector Variational Inequalities and…
Qamrul Hasan Ansari, Elisabeth Kobis, …
Hardcover
R4,933
Discovery Miles 49 330
|