![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This book is the first serious attempt to gather all of the available theory of "nonharmonic Fourier series" in one place, combining published results with new results by the authors.
It is with great pleasure that I accepted invitation of Adnan Ibrahimbegovic to write this preface, for this invitation gave me the privilege to be one of the ?rsttoreadhisbookandallowedmetoonceagainemphasizetheimportance for our discipline of solid mechanics, which is currently under considerable development, to produce the reference books suitable for students and all other researchers and engineers who wish to advance their knowledge on the subject. Thesolidmechanicshascloselyfollowedtheprogressincomputerscienceand is currently undergoing a true revolution where the numerical modelling and simulations are playing the central role. In the industrial environment, the 'virtual' (or the computing science) is present everywhere in the design and engineering procedures. I have a habit of saying that the solid mechanics has become the science of modelling and inthat respectexpanded beyondits t- ditional frontiers. Several facets of current developments have already been treated in di?erent works published within the series 'Studies in mechanics of materials and structures'; for example, modelling heterogeneous materials (Besson et al. ), fracture mechanics (Leblond), computational strategies and namely LATIN method (Ladev' eze), instability problems (NQ Son) and ve- ?cation of ?nite element method (Ladev' eze-Pelle). To these (French) books, one should also add the work of Lemaitre-Chaboche on nonlinear behavior of solid materials and of Batoz on ?nite element method.
The main contents and character of the monograph did not change with respect to the first edition. However, within most chapters we incorporated quite a number of modifications which take into account the recent development of the field, the very valuable suggestions and comments that we received from numerous colleagues and students as well as our own experience while using the book. Some errors and misprints in the first edition are also corrected. Reiner Horst May 1992 Hoang Tuy PREFACE TO THE FIRST EDITION The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years aga would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented."
There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world. - Nikolai Ivanovich Lobatchevsky This book is an extensively-revised and expanded version of "The Theory of Semirings, with Applicationsin Mathematics and Theoretical Computer Science" [Golan, 1992], first published by Longman. When that book went out of print, it became clear - in light of the significant advances in semiring theory over the past years and its new important applications in such areas as idempotent analysis and the theory of discrete-event dynamical systems - that a second edition incorporating minor changes would not be sufficient and that a major revision of the book was in order. Therefore, though the structure of the first "dition was preserved, the text was extensively rewritten and substantially expanded. In particular, references to many interesting and applications of semiring theory, developed in the past few years, had to be added. Unfortunately, I find that it is best not to go into these applications in detail, for that would entail long digressions into various domains of pure and applied mathematics which would only detract from the unity of the volume and increase its length considerably. However, I have tried to provide an extensive collection of examples to arouse the reader's interest in applications, as well as sufficient citations to allow the interested reader to locate them. For the reader's convenience, an index to these citations is given at the end of the book .
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."
This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.
Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.
This book should be accessible to students who have had a first course in matrix theory. The existence and uniqueness theorem of Chapter 4 requires the implicit function theorem, but we give a self-contained constructive proof ofthat theorem. The reader willing to accept the implicit function theorem can read the book without an advanced calculus background. Chapter 8 uses the Moore-Penrose pseudo-inverse, but is accessible to students who have facility with matrices. Exercises are placed at those points in the text where they are relevant. For U. S. universities, we intend for the book to be used at the senior undergraduate level or beginning graduate level. Chapter 2, which is on continued fractions, is not essential to the material of the remaining chapters, but is intimately related to the remaining material. Continued fractions provide closed form representations of the extreme solutions of some discrete matrix Riccati equations. Continued fractions solution methods for Riccati difference equations provide an approach analogous to series solution methods for linear differential equations. The book develops several topics which have not been available at this level. In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations. Motivation for our approach to difference equations came from the work of Harris, Vaughan, Hartman, Reid, Patula, Hooker, Erbe & Van, and Bohner.
The aim of this book is to present the mathematical theory and the
know-how to make computer programs for the numerical approximation
of Optimal Control of PDE's. The computer programs are presented in
a straightforward generic language. As a consequence they are well
structured, clearly explained and can be translated easily into any
high level programming language. Applications and corresponding
numerical tests are also given and discussed. To our knowledge,
this is the first book to put together mathematics and computer
programs for Optimal Control in order to bridge the gap between
mathematical abstract algorithms and concrete numerical ones.
There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.
This monograph is mostly devoted to the problem of the geome- trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La- grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non- linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.
The material of the present book is an extension of a graduate course given by the author at the University "Al.I. Cuza" Iasi and is intended for stu dents and researchers interested in the applications of optimal control and in mathematical biology. Age is one of the most important parameters in the evolution of a bi ological population. Even if for a very long period age structure has been considered only in demography, nowadays it is fundamental in epidemiology and ecology too. This is the first book devoted to the control of continuous age structured populationdynamics.It focuses on the basic properties ofthe solutions and on the control of age structured population dynamics with or without diffusion. The main goal of this work is to familiarize the reader with the most important problems, approaches and results in the mathematical theory of age-dependent models. Special attention is given to optimal harvesting and to exact controllability problems, which are very important from the econom ical or ecological points of view. We use some new concepts and techniques in modern control theory such as Clarke's generalized gradient, Ekeland's variational principle, and Carleman estimates. The methods and techniques we use can be applied to other control problems."
Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.
Estimating unknown parameters based on observation data conta- ing information about the parameters is ubiquitous in diverse areas of both theory and application. For example, in system identification the unknown system coefficients are estimated on the basis of input-output data of the control system; in adaptive control systems the adaptive control gain should be defined based on observation data in such a way that the gain asymptotically tends to the optimal one; in blind ch- nel identification the channel coefficients are estimated using the output data obtained at the receiver; in signal processing the optimal weighting matrix is estimated on the basis of observations; in pattern classifi- tion the parameters specifying the partition hyperplane are searched by learning, and more examples may be added to this list. All these parameter estimation problems can be transformed to a root-seeking problem for an unknown function. To see this, let - note the observation at time i. e. , the information available about the unknown parameters at time It can be assumed that the parameter under estimation denoted by is a root of some unknown function This is not a restriction, because, for example, may serve as such a function.
In t.lw fHll of !!)!)2, Professor Dr. M. Alt.ar, chairman of tIw newly established dppartnwnt or Managenwnt. wit.h Comput.er Science at thp Homanian -American Univprsity in Bucharest (a private univprsil.y), inl.roducod in t.he curriculum a course on DiffenHltial Equations and Optimal Cont.rol, asking lIS to teach such course. It was an inter8sting challengo, since for t.Iw first tim8 wo had to t8ach such mathemaLical course for st.udents with economic background and interosts. It was a natural idea to sl.m't by looking at pconomic models which were described by differpntial equations and for which problems in (\pcision making dir! ariso. Since many or such models were r!escribed in discret.e timp, wp eleculed to elpvolop in parallel t.he theory of differential equations anel thaI, of discrete-timo systpms aur! also control theory in continuous and discrete time. Tlw jll'eSPlu book is t.he result of our tpaehing px!wripnce wit.h this courge. It is an enlargud version of t.he actllal lectuf(~s where, depending on t.he background of tho St.lI(\('Ilts, not all proofs could be given in detail. We would like to express our grat.itude to tlw Board of the Romanian - American University, personally 1. 0 the Rector, Professor Dr. Ion Smedpscu, for support, encouragement and readinpss to accept advancnd ideas in tho curriculum. fhe authors express t.heir warmest thanks 1.0 Mrs. Monica Stan . Necula for tho oxcellent procC'ssing of t.he manuscript.
The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows, convexity and energies; Semidefinite Hessians and applications; Minimization of functions on Riemannian manifolds. All the numerical algorithms, computer programs and the appendices (Riemannian convexity of functions f: R R, Descent methods on the Poincare plane, Descent methods on the sphere, Completeness and convexity on Finsler manifolds) constitute an attempt to make accesible to all users of this book some basic computational techniques and implementation of geometric structures. To further aid the readers, this book also contains a part of the folklore about Riemannian geometry, convex functions and dynamical systems because it is unfortunately "nowhere" to be found in the same context; existing textbooks on convex functions on Euclidean spaces or on dynamical systems do not mention what happens in Riemannian geometry, while the papers dealing with Riemannian manifolds usually avoid discussing elementary facts. Usually a convex function on a Riemannian manifold is a real valued function whose restriction to every geodesic arc is convex."
This monograph covers one of the divisions of mathematical theory of control which examines moving objects functionating under conflict and uncertainty conditions. To identify this range of problems we use the term "conflict con trolled processes," coined in recent years. As the name itself does not imply the type of dynamics (difference, ordinary differential, difference-differential, integral, or partial differential equations) the differential games falI within its realms. The problems of search and tracking moving objects are also referred to the field of conflict controlled process. The contents of the monograph is confined to studying classical pursuit-evasion problems which are central to the theory of conflict controlled processes. These problems underlie the theory and are of considerable interest to researchers up to now. It should be noted that the methods of "Line of Sight," "Parallel Pursuit," "Proportional N avigation,""Modified Pursuit" and others have been long and well known among engineers engaged in design of rocket and space technology. An abstract theory of dynamic game problems, in its turn, is based on the methods originated by R. Isaacs, L. S. Pontryagin, and N. N. Krasovskii, and on the approaches developed around these methods. At the heart of the book is the Method of Resolving Functions which was realized within the class of quasistrategies for pursuers and then applied to the solution of the problems of "hand-to-hand," group, and succesive pursuit."
This volume summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past few decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990 s. The authors integrate related research into the book and demonstrate the wide context from which the area has grown and continues to grow.
Conjugate direction methods were proposed in the early 1950s. When high speed digital computing machines were developed, attempts were made to lay the fo- dations for the mathematical aspects of computations which could take advantage of the ef?ciency of digital computers. The National Bureau of Standards sponsored the Institute for Numerical Analysis, which was established at the University of California in Los Angeles. A seminar held there on numerical methods for linear equationswasattendedbyMagnusHestenes, EduardStiefel andCorneliusLanczos. This led to the ?rst communication between Lanczos and Hestenes (researchers of the NBS) and Stiefel (of the ETH in Zurich) on the conjugate direction algorithm. The method is attributed to Hestenes and Stiefel who published their joint paper in 1952 [101] in which they presented both the method of conjugate gradient and the conjugate direction methods including conjugate Gram-Schmidt processes. A closelyrelatedalgorithmwasproposedbyLanczos[114]whoworkedonalgorithms for determiningeigenvalues of a matrix. His iterative algorithm yields the similarity transformation of a matrix into the tridiagonal form from which eigenvalues can be well approximated.Thethree-termrecurrencerelationofthe Lanczosprocedurecan be obtained by eliminating a vector from the conjugate direction algorithm scheme. Initially the conjugate gradient algorithm was called the Hestenes-Stiefel-Lanczos method [86].
Search Theory is one of the original disciplines within the field of Operations Research. It deals with the problem faced by a Searcher who wishes to minimize the time required to find a hidden object, or "target. " The Searcher chooses a path in the "search space" and finds the target when he is sufficiently close to it. Traditionally, the target is assumed to have no motives of its own regarding when it is found; it is simply stationary and hidden according to a known distribution (e. g. , oil), or its motion is determined stochastically by known rules (e. g. , a fox in a forest). The problems dealt with in this book assume, on the contrary, that the "target" is an independent player of equal status to the Searcher, who cares about when he is found. We consider two possible motives of the target, and divide the book accordingly. Book I considers the zero-sum game that results when the target (here called the Hider) does not want to be found. Such problems have been called Search Games (with the "ze- sum" qualifier understood). Book II considers the opposite motive of the target, namely, that he wants to be found. In this case the Searcher and the Hider can be thought of as a team of agents (simply called Player I and Player II) with identical aims, and the coordination problem they jointly face is called the Rendezvous Search Problem.
This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve," has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable." These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well posed problem."
This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.
LANCELOT is a software package for solving large-scale nonlinear optimization problems. This book is our attempt to provide a coherent overview of the package and its use. This includes details of how one might present examples to the package, how the algorithm tries to solve these examples and various technical issues which may be useful to implementors of the software. We hope this book will be of use to both researchers and practitioners in nonlinear programming. Although the book is primarily concerned with a specific optimization package, the issues discussed have much wider implications for the design and im plementation of large-scale optimization algorithms. In particular, the book contains a proposal for a standard input format for large-scale optimization problems. This proposal is at the heart of the interface between a user's problem and the LANCE LOT optimization package. Furthermore, a large collection of over five hundred test ex amples has already been written in this format and will shortly be available to those who wish to use them. We would like to thank the many people and organizations who supported us in our enterprise. We first acknowledge the support provided by our employers, namely the the Facultes Universitaires Notre-Dame de la Paix (Namur, Belgium), Harwell Laboratory (UK), IBM Corporation (USA), Rutherford Appleton Laboratory (UK) and the University of Waterloo (Canada). We are grateful for the support we obtained from NSERC (Canada), NATO and AMOCO (UK)."
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques. |
![]() ![]() You may like...
Blockchain Applications in IoT Ecosystem
Tanupriya Choudhury, Abhirup Khanna, …
Hardcover
R3,650
Discovery Miles 36 500
Analyzing Emotion in Spontaneous Speech
Rupayan Chakraborty, Meghna Pandharipande, …
Hardcover
R1,521
Discovery Miles 15 210
Academic Press Library in Signal…
Sergios Theodoridis, Rama Chellappa
Hardcover
R4,319
Discovery Miles 43 190
|