Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.
This book is the first serious attempt to gather all of the available theory of "nonharmonic Fourier series" in one place, combining published results with new results by the authors.
Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].
There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida."
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
Functional Analysis is primarily concerned with the structure of infinite dimensional vector spaces and the transformations, which are frequently called operators, between such spaces. The elements of these vector spaces are usually functions with certain properties, which map one set into another. Functional analysis became one of the success stories of mathematics in the 20th century, in the search for generality and unification. Although it remains a very attractive field of pure mathematics, it has also proven to be an indispensable and powerful tool for physicists, engineers and economists involved in research and development, for helping them understand their subject in depth. This book is designed to provide the reader with a solid foundation of almost the entire spectrum of functional analysis, upon which each reader may build their own special structure, tailored to his or her purposes. The only prerequisite is the familiarity with the classical analysis of standard level. The book then provides a smooth but fast-paced systematical passage to the required advanced mathematical level, without sacrificing the mathematical rigor with almost no reference to outside materials to offering also a complete coverage of this discipline. We believe that the latter is one of the unique features of this book. None of the books in literature cover that much material, starting from a rather modest mathematical level. Functional Analysis will be primarily of interest to graduate students in applied mathematics, in all branches of engineering, in physical and economical sciences and to those working in research and development in industry and research institutes.
This is a unique collection of papers, all written by leading specialists, that presents the most recent results and advances in stability theory as it relates to fluid flows. The stability property is of great interest for researchers in many fields, including mathematical analysis, theory of partial differential equations, optimal control, numerical analysis, and fluid mechanics. This text will be essential reading for many researchers working in these fields.
Search Theory is one of the original disciplines within the field of Operations Research. It deals with the problem faced by a Searcher who wishes to minimize the time required to find a hidden object, or "target. " The Searcher chooses a path in the "search space" and finds the target when he is sufficiently close to it. Traditionally, the target is assumed to have no motives of its own regarding when it is found; it is simply stationary and hidden according to a known distribution (e. g. , oil), or its motion is determined stochastically by known rules (e. g. , a fox in a forest). The problems dealt with in this book assume, on the contrary, that the "target" is an independent player of equal status to the Searcher, who cares about when he is found. We consider two possible motives of the target, and divide the book accordingly. Book I considers the zero-sum game that results when the target (here called the Hider) does not want to be found. Such problems have been called Search Games (with the "ze- sum" qualifier understood). Book II considers the opposite motive of the target, namely, that he wants to be found. In this case the Searcher and the Hider can be thought of as a team of agents (simply called Player I and Player II) with identical aims, and the coordination problem they jointly face is called the Rendezvous Search Problem.
Advances in Mechanics and Mathematics (AMMA) is intended to bridge
the gap by providing multi-disciplinary publications. This volume,
AMMA 2002, includes two parts with three articles by four subject
experts. Part 1 deals with nonsmooth static and dynamic systems. A
systematic mathematical theory for multibody dynamics with
unilateral and frictional constraints and a brief introduction to
hemivariational inequalities together with some new developments in
nonsmooth semi-linear elliptic boundary value problems are
presented. Part 2 provides a comprehensive introduction and the
latest research on dendritic growth in fluid mechanics, one of the
most profound and fundamental subjects in the area of interfacial
pattern formation, a commonly observed phenomenon in crystal growth
and solidification processes.
The problems of interrelation between human economics and natural environment include scientific, technical, economic, demographic, social, political and other aspects that are studied by scientists of many specialities. One of the important aspects in scientific study of environmental and ecological problems is the development of mathematical and computer tools for rational management of economics and environment. This book introduces a wide range of mathematical models in economics, ecology and environmental sciences to a general mathematical audience with no in-depth experience in this specific area. Areas covered are: controlled economic growth and technological development, world dynamics, environmental impact, resource extraction, air and water pollution propagation, ecological population dynamics and exploitation. A variety of known models are considered, from classical ones (Cobb Douglass production function, Leontief input-output analysis, Solow models of economic dynamics, Verhulst-Pearl and Lotka-Volterra models of population dynamics, and others) to the models of world dynamics and the models of water contamination propagation used after Chemobyl nuclear catastrophe. Special attention is given to modelling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Xlll XIV Construction of Mathematical Models ..."
This book by two of the foremost researchers and writers in the field is the first part of a treatise that covers the subject in breadth and depth, paying special attention to the historical origins of the theory. Both individually and collectively these volumes have already become standard references.
No pleasure lasts long unless there is variety in it. Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
This book is based on a seminar given at the University of California at Los Angeles in the Spring of 1975. The choice of topics reflects my interests at the time and the needs of the students taking the course. Initially the lectures were written up for publication in the Lecture Notes series. How ever, when I accepted Professor A. V. Balakrishnan's invitation to publish them in the Springer series on Applications of Mathematics it became necessary to alter the informal and often abridged style of the notes and to rewrite or expand much of the original manuscript so as to make the book as self-contained as possible. Even so, no attempt has been made to write a comprehensive treatise on filtering theory, and the book still follows the original plan of the lectures. While this book was in preparation, the two-volume English translation of the work by R. S. Liptser and A. N. Shiryaev has appeared in this series. The first volume and the present book have the same approach to the sub ject, viz. that of martingale theory. Liptser and Shiryaev go into greater detail in the discussion of statistical applications and also consider inter polation and extrapolation as well as filtering."
Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines presenting both the background of the subject area and the techniques for solving the problems. "
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
In this monograph, questions of extensions and relaxations are consid ered. These questions arise in many applied problems in connection with the operation of perturbations. In some cases, the operation of "small" per turbations generates "small" deviations of basis indexes; a corresponding stability takes place. In other cases, small perturbations generate spas modic change of a result and of solutions defining this result. These cases correspond to unstable problems. The effect of an unstability can arise in extremal problems or in other related problems. In this connection, we note the known problem of constructing the attainability domain in con trol theory. Of course, extremal problems and those of attainability (in abstract control theory) are connected. We exploit this connection here (see Chapter 5). However, basic attention is paid to the problem of the attainability of elements of a topological space under vanishing perturba tions of restrictions. The stability property is frequently missing; the world of unstable problems is of interest for us. We construct regularizing proce dures. However, in many cases, it is possible to establish a certain property similar to partial stability. We call this property asymptotic nonsensitivity or roughness under the perturbation of some restrictions. The given prop erty means the following: in the corresponding problem, it is the same if constraints are weakened in some "directions" or not. On this basis, it is possible to construct a certain classification of constraints, selecting "di rections of roughness" and "precision directions.""
The material of the present book is an extension of a graduate course given by the author at the University "Al.I. Cuza" Iasi and is intended for stu dents and researchers interested in the applications of optimal control and in mathematical biology. Age is one of the most important parameters in the evolution of a bi ological population. Even if for a very long period age structure has been considered only in demography, nowadays it is fundamental in epidemiology and ecology too. This is the first book devoted to the control of continuous age structured populationdynamics.It focuses on the basic properties ofthe solutions and on the control of age structured population dynamics with or without diffusion. The main goal of this work is to familiarize the reader with the most important problems, approaches and results in the mathematical theory of age-dependent models. Special attention is given to optimal harvesting and to exact controllability problems, which are very important from the econom ical or ecological points of view. We use some new concepts and techniques in modern control theory such as Clarke's generalized gradient, Ekeland's variational principle, and Carleman estimates. The methods and techniques we use can be applied to other control problems."
There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world. - Nikolai Ivanovich Lobatchevsky This book is an extensively-revised and expanded version of "The Theory of Semirings, with Applicationsin Mathematics and Theoretical Computer Science" [Golan, 1992], first published by Longman. When that book went out of print, it became clear - in light of the significant advances in semiring theory over the past years and its new important applications in such areas as idempotent analysis and the theory of discrete-event dynamical systems - that a second edition incorporating minor changes would not be sufficient and that a major revision of the book was in order. Therefore, though the structure of the first "dition was preserved, the text was extensively rewritten and substantially expanded. In particular, references to many interesting and applications of semiring theory, developed in the past few years, had to be added. Unfortunately, I find that it is best not to go into these applications in detail, for that would entail long digressions into various domains of pure and applied mathematics which would only detract from the unity of the volume and increase its length considerably. However, I have tried to provide an extensive collection of examples to arouse the reader's interest in applications, as well as sufficient citations to allow the interested reader to locate them. For the reader's convenience, an index to these citations is given at the end of the book .
Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.
This book is a practical guide to the application of control benchmarking to real, complex, industrial processes. The variety of industrial case studies gives the benchmarking ideas presented a robust real-world attitude. The book deals with control engineering principles and economic and management aspects of benchmarking. It shows the reader how to avoid common problems in benchmarking and details the benefits of effective benchmarking.
* Provides a broad overview of modeling approaches and solution methodologies for addressing inventory problems, particularly the management of high cost, low demand rate service parts found in multi-echelon settings * The text may be used in a variety of courses for first-year graduate students or senior undergraduates, or as a reference for researchers and practitioners * A background in stochastic processes and optimization is assumed
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.
This, the fourth edition of Stuwe 's book on the calculus of variations, surveys new developments in this exciting field. It also gives a concise introduction to variational methods. In particular it includes the proof for the convergence of the Yamabe flow and a detailed treatment of the phenomenon of blow-up. Recently discovered results for backward bubbling in the heat flow for harmonic maps or surfaces are discussed. A number of changes have been made throughout the text. |
You may like...
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,831
Discovery Miles 28 310
Satellite Formation Flying - Relative…
Danwei Wang, Baolin Wu, …
Hardcover
R4,244
Discovery Miles 42 440
Fault Diagnosis Inverse Problems…
Lidice Camps Echevarria, Orestes Llanes Santiago, …
Hardcover
R3,028
Discovery Miles 30 280
Variational Analysis of Regular Mappings…
Alexander D. Ioffe
Hardcover
R4,265
Discovery Miles 42 650
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,156
Discovery Miles 61 560
Numerical Engineering Optimization…
Andreas Oechsner, Resam Makvandi
Hardcover
R1,483
Discovery Miles 14 830
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,839
Discovery Miles 28 390
|