![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
Interest in regularization methods for ill-posed nonlinear operator equations and variational inequalities of monotone type in Hilbert and Banach spaces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis.
For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
The ASI on Nonlinear Model Based Process Control (August 10-20, 1997~ Antalya - Turkey) convened as a continuation of a previous ASI which was held in August 1994 in Antalya on Methods of Model Based Process Control in a more general context. In 1994, the contributions and discussions convincingly showed that industrial process control would increasingly rely on nonlinear model based control systems. Therefore, the idea for organizing this ASI was motivated by the success of the first one, the enthusiasm expressed by the scientific community for continuing contact, and the growing incentive for on-line control algorithms for nonlinear processes. This is due to tighter constraints and constantly changing performance objectives that now force the processes to be operated over a wider range of conditions compared to the past, and the fact that many of industrial operations are nonlinear in nature. The ASI intended to review in depth and in a global way the state-of-the-art in nonlinear model based control. The list of lecturers consisted of 12 eminent scientists leading the principal developments in the area, as well as industrial specialists experienced in the application of these techniques. Selected out of a large number of applications, there was a high quality, active audience composed of 59 students from 20 countries. Including family members accompanying the participants, the group formed a large body of92 persons. Out of the 71 participants, 11 were from industry.
Substantially revised, reorganised and updated, the second edition now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject.
Industrial production is one of the most basic human activities indispensable to the economic activity. Due to its complexity, production is not very well understood and modeled as opposed to traditional fields of inquiry such as physics. This book aims at enhancing rigorous understanding of a particular area of production, that of analysis and optimization of production lines and networks using discrete event models and simulation. To our knowledge, this is the first book treating this subject from the point of view mentioned above. We have arrived at the realization that discrete event models and simulation provide perhaps the best tools to model production lines and networks for a number of reasons. Analysis is precise but demands enormous computational resources, usually unavailable in practical situations. Brute force simulation is also precise but slow when quick decisions are to be made. Approximate analytical models are fast but often unreliable as far as accuracy is concerned. The approach of the book, on the other hand, combines speed and accuracy to an exceptional degree in most practical applications.
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework. This new perspective on a popular topic is presented by a well respected expert in the field.
This volume deals with controllability and observability properties of nonlinear systems, as well as various ways to obtain input-output representations. The emphasis is on fundamental notions as (controlled) invariant distributions and submanifolds, together with algorithms to compute the required feedbacks.
Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if (Q) for all and measurable A. This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property. Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.
Richard Bellmann developed a theory of dynamic programming which is for many reasons still in the center of great interest. The authors present a new approach in the ?eld of the optimization and multi-objective control of time-discrete systems which is closely related to the work of Richard Bellmann. They develop their own concept and their extension to the optimization and multi-objective control of time-discrete systems as well as to dynamic networks and multilayered structures are very stimulating for further research. Di?erent perspectives of discrete control and optimal dynamic ?ow problems on networks are treated and characterized. Together with the algorithmic solutions a framework of multi-objective control problems is - rived. The conclusion with a real world example underlines the necessity and - portance of their theoretic framework. As they come back to the classical Bellmann concept of dynamic programming they stress and honor his basic concept without debase their own work. Multilayereddecisionprocessesaspartofthedesignandanalysisofcomplexsystems and networks will be essential in many ways and ?elds in the future.
H-infinity control theory deals with the minimization of the
H-norm of the transfer matrix from an exogenous disturbance to a
pertinent controlled output of a given plant. This comprehensive
book examines both the theoretical and practical aspects of
H-infinity control from the angle of the structural properties of
linear systems.
Multilevel decision theory arises to resolve the contradiction between increasing requirements towards the process of design, synthesis, control and management of complex systems and the limitation of the power of technical, control, computer and other executive devices, which have to perform actions and to satisfy requirements in real time. This theory rises suggestions how to replace the centralised management of the system by hierarchical co-ordination of sub-processes. All sub-processes have lower dimensions, which support easier management and decision making. But the sub-processes are interconnected and they influence each other. Multilevel systems theory supports two main methodological tools: decomposition and co-ordination. Both have been developed, and implemented in practical applications concerning design, control and management of complex systems. In general, it is always beneficial to find the best or optimal solution in processes of system design, control and management. The real tendency towards the best (optimal) decision requires to present all activities in the form of a definition and then the solution of an appropriate optimization problem. Every optimization process needs the mathematical definition and solution of a well stated optimization problem. These problems belong to two classes: static optimization and dynamic optimization. Static optimization problems are solved applying methods of mathematical programming: conditional and unconditional optimization. Dynamic optimization problems are solved by methods of variation calculus: Euler Lagrange method; maximum principle; dynamical programming.
Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.
Lnear prediction theory and the related algorithms have matured to the point where they now form an integral part of many real-world adaptive systems. When it is necessary to extract information from a random process, we are frequently faced with the problem of analyzing and solving special systems of linear equations. In the general case these systems are overdetermined and may be characterized by additional properties, such as update and shift-invariance properties. Usually, one employs exact or approximate least-squares methods to solve the resulting class of linear equations. Mainly during the last decade, researchers in various fields have contributed techniques and nomenclature for this type of least-squares problem. This body of methods now constitutes what we call the theory of linear prediction. The immense interest that it has aroused clearly emerges from recent advances in processor technology, which provide the means to implement linear prediction algorithms, and to operate them in real time. The practical effect is the occurrence of a new class of high-performance adaptive systems for control, communications and system identification applications. This monograph presumes a background in discrete-time digital signal processing, including Z-transforms, and a basic knowledge of discrete-time random processes. One of the difficulties I have en countered while writing this book is that many engineers and computer scientists lack knowledge of fundamental mathematics and geometry."
In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al, ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods."
This handbook provides an in-depth examination of important theoretical methods and procedures in applied analysis. It details many of the most important theoretical trends in nonlinear analysis and applications to different fields. These features make the volume a valuable tool for every researcher working on nonlinear analysis.
Hysteresis phenomena are common in numerous physical, mechanical, ecological and biological systems. They reflect memory effects and process irreversibility. The use of hysteresis operators (hysterons) offers an approach to macroscopic modelling of the dynamics of phase transitions and rheological systems. The applications cover processes in electromagnetism, elastoplasticity and population dynamics in particular. Hysterons are also typical elements of control systems where they represent thermostats and other discontinuous controllers with memory. The book offers the first systematic mathematical treatment of hysteresis nonlinearities. Construction procedures are set up for hysterons in various function spaces, in continuous and discontinuous cases. A general theory of variable hysterons is developed, including identification and stability questions. Both deterministic and non-deterministic hysterons are considered, with applications to the study of feedback systems. Many of the results presented - mostly obtained by the authors and their scientific group - have not been published before. The book is essentially self contained and is addressed both to researchers and advanced students.
This book has grown out of lectures and courses in calculus of variations and optimization taught for many years at the University of Michigan to graduate students at various stages of their careers, and always to a mixed audience of students in mathematics and engineering. It attempts to present a balanced view of the subject, giving some emphasis to its connections with the classical theory and to a number of those problems of economics and engineering which have motivated so many of the present developments, as well as presenting aspects of the current theory, particularly value theory and existence theorems. However, the presentation ofthe theory is connected to and accompanied by many concrete problems of optimization, classical and modern, some more technical and some less so, some discussed in detail and some only sketched or proposed as exercises. No single part of the subject (such as the existence theorems, or the more traditional approach based on necessary conditions and on sufficient conditions, or the more recent one based on value function theory) can give a sufficient representation of the whole subject. This holds particularly for the existence theorems, some of which have been conceived to apply to certain large classes of problems of optimization. For all these reasons it is essential to present many examples (Chapters 3 and 6) before the existence theorems (Chapters 9 and 11-16), and to investigate these examples by means of the usual necessary conditions, sufficient conditions, and value function theory.
This book contains translations of papers from the first volume of the new Russian-language journal published at the Sobolev Institute of Mathematics (Sibe- rian Branch of the Russian Academy of Sciences, Novosibirsk) since 1994. In 1994 the journal was titled Sibirskil Zhurnal Issledovaniya Operatsil. Since 1995 this journal has the title DiskretnYl Analiz i Issledovanie Operatsil (Discrete Analysis and Operations Research) The aim of this journal is to bring together research papers in different areas of discrete mathematics and computer science. The journal DiskretnYl Analiz i Issledovanie Operatsil covers the following fields: * discrete optimization * synthesis and complexity * discrete structures and * of control systems extremal problems * automata * combinatorics * graphs * control and reliability * game theory and its of discrete devices applications * mathematical models and * coding theory methods of decision making * scheduling theory * design and analysis * functional systems theory of algori thms Contributions presented to the journal can be original research papers and occasional survey articles of moderate length. A. D. Korshunov THE NUMBER OF DISTINCT SUBWORDS OF FIXED LENGTH IN THE MORSE-HEDLUND SEQUENCEt) S. V. Avgustinovich An exact formula is obtained for the number of distinct subwords of length n in the Morse-Hedlund sequence [1), i. e. , the sequence in which the initial member is 0 and subsequent members are produced by unlimited application of the operation of substituting 01 for 0 and 10 for 1.
Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.
Advances on Fractional Inequalities use primarily the Caputo fractional derivative, as the most important in applications, and presents the first fractional differentiation inequalities of Opial type which involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional differentiation inequalities in the univariate and multivariate cases are illustrated. Throughout the book many applications are given. Fractional differentiation inequalities are by themselves an important and great mathematical topic for research. Furthermore they have many applications, the most important ones are in establishing uniqueness of solution in fractional differential equations and systems and in fractional partial differential equations. Also they provide upper bounds to the solutions of the above equations. Fractional Calculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous porous material, diffusive transport, fluid flow, dynamical processes in self-similar structures, dynamics of earthquakes, optics, geology, viscoelastic materials, bio-sciences, bioengineering, medicine, economics, probability and statistics, astrophysics, chemical engineering, physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear control, signal processing, control of power electronic, converters, chaotic dynamics, polymer science, proteins, polymer physics, electrochemistry, statistical physics, rheology, thermodynamics, neural networks, etc. Almost all fields of research in science and engineering use fractional calculus in order to describe results. This book is a part of Fractional Calculus, therefore it is useful for researchers and graduate students for research, seminars and advanced graduate courses, in pure and applied mathematics, engineering and all other applied sciences."
Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II."
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.
Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering. |
You may like...
From Classical to Quantum Fields
Laurent Baulieu, John Iliopoulos, …
Hardcover
R3,673
Discovery Miles 36 730
Magnetism and Synchrotron Radiation…
Eric Beaurepaire, Herve Bulou, …
Hardcover
R5,226
Discovery Miles 52 260
Measurement of the Top Quark Mass in the…
Alexander Grohsjean
Hardcover
R1,405
Discovery Miles 14 050
|