![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
Since the volume may be of interest to a broad variety of people, it is arranged in parts that require different levels of mathematical background. Part I is written in a simple form and can be assessed by any computer-literate person interested in the application of visualization methods in decision making. This part will be of interest to specialists and students in various fields related to decision making including environmental studies, management, business, engineering, etc. In Part II computational methods are introduced in a relatively simple form. This part will be of interest to specialists and students in the field of applied optimization, operations research and computer science. Part III is written for specialists and students in applied mathematics interested in the theoretical basis of modern optimization. Due to this structure, the parts can be read independently. For example, students interested in environmental applications could restrict themselves to Part I and the Epilogue. In contrast, those who are interested in computational methods can skip Part I and read Part II only. Finally, specialists, who are interested in the theory of approximation of multi-dimensional convex sets or in estimation of disturbances of polyhedral sets, can read the corresponding chapters of Part III.
This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time.
Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming."
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985."
Resources should be used sparingly both from a point of view of economy and eco logy. Thus in controlling industrial, economical and social processes, optimization is the tool of choice. In this area of applied numerical analysis, the INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL (IFAC) acts as a link between research groups in universities, national research laboratories and industry. For this pur pose, the technical committee Mathematics of Control of IFAC organizes biennial conferences with the objective of bringing together experts to exchange ideas, ex periences and future developments in control applications of optimization. There should be a genuine feedback loop between mathematicians, computer scientists, engineers and software developers. This loop should include the design, application and implementation of algorithms. The contributions of industrial practitioners are especially important. These proceedings contain selected papers from a workshop on CONTROL Ap PLICATIONS OF OPTIMIZATION, which took place at the Fachhochschule Miinchen in September 1992. The workshop was the ninth in a series of very successful bien nial meetings, starting with the Joint Automatic Control Conference in Denver in 1978 and followed by conferences in London, Oberpfaffenhofen, San Francisco, Ca pri, Tbilisi and Paris. The workshop was attended by ninety researchers from four continents. This volume represents the state of the art in the field, with emphasis on progress made since the publication of the proceedings of the Capri meeting, edited by G. di Pillo under the title 'Control Applications of Optimization and Nonlinear Programming'."
A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
Primary Audience for the Book * Specialists in numerical computations who are interested in algorithms with automatic result verification. * Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. * Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g.
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer's works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
The Handbook of CO2in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO2emission into account. The book includes power systems operation modeling with CO2emissions considerations, CO2market mechanism modeling, CO2regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.
This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schattler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.
"Discrete-Time Linear Systems: Theory and Design with Applications "combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).
This book is devoted to the mathematical optimization theory and modeling techniques that recently have been applied to the problem of controlling the shape and intensity of the power density distribution in the core of large nuclear reactors. The book has been prepared with the following purposes in mind: 1. To provide, in a condensed manner, the background preparation on reactor kinetics required for a comprehensive description of the main problems encountered in designing spatial control systems for nuclear reactor cores. 2. To present the work that has already been done on this subject and provide the basic mathematical tools required for a full understand ing of the different methods proposed in the literature. 3. To stimulate further work in this challenging area by weighting the advantages and disadvantages of the existing techniques and evaluating their effectiveness and applicability. In addition to coverage of the standard topics on the subject of optimal control for distributed parametersystems, the book includes, at amathemati cal level suitable for graduate students in engineering, discussions of con ceptsoffunctional analysis, the representation theory ofgroups, and integral equations. Although these topics constitute a requisite for a full understanding of the new developments in the area of reactor modeling and control, they are seidom treated together in a single book and, when they are, their presenta tion isoften directed to the mathematician.They are thus relatively unknown to the engineering community."
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
Hamilton-Jacobi equations and other types of partial differential equa- tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func- tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first- order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven- ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves- tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto- nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].
Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solu tions of simultaneous linear equations and on the determination of eigen values. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaus sian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We dis covered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D."
The problem of controlling or stabilizing a system of differential equa tions in the presence of random disturbances is intuitively appealing and has been a motivating force behind a wide variety of results grouped loosely together under the heading of "Stochastic Control." This book is concerned with a special instance of this general problem, the "Adaptive LQ Regulator," which is a stochastic control problem of partially observed type that can, in certain cases, be solved explicitly. We first describe this problem, as it is the focal point for the entire book, and then describe the contents of the book. The problem revolves around an uncertain linear system x(O) = x~ in R", where 0 E {1, ... , N} is a random variable representing this uncertainty and (Ai' B , C) and xJ are the coefficient matrices and initial state, respectively, of j j a linear control system, for eachj = 1, ... , N. A common assumption is that the mechanism causing this uncertainty is additive noise, and that conse quently the "controller" has access only to the observation process y( . ) where y = Cex +~.
When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Focusing on the mathematical description of stochastic dynamics in discrete as well as in continuous time, this book investigates such dynamical phenomena as perturbations, bifurcations and chaos. It also introduces new ideas for the exploration of infinite dimensional systems, in particular stochastic partial differential equations. Example applications are presented from biology, chemistry and engineering, while describing numerical treatments of stochastic systems.
A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects are described in the same unified methodology. Numerical methods for all these problems are provided and given in meta-language, which can be implemented easily on the computer. Precise integration methods both for initial value problems and for two-point boundary value problems are proposed, which result in the numerical solutions of computer precision. Key Features of the text include: -Unified approach based on Hamilton duality system theory and symplectic mathematics. -Gyroscopic system vibration, eigenvalue problems. -Canonical transformation applied to non-linear systems. -Pseudo-excitation method for structural random vibrations. -Precise integration of two-point boundary value problems. -Wave propagation along wave-guides, scattering. -Precise solution of Riccati differential equations. -Kalman filtering. -HINFINITY theory of control and filter.
In the mathematical treatment of many problems which arise in physics, economics, engineering, management, etc., the researcher frequently faces two major difficulties: infinite dimensionality and randomness of the evolution process. Infinite dimensionality occurs when the evolution in time of a process is accompanied by a space-like dependence; for example, spatial distribution of the temperature for a heat-conductor, spatial dependence of the time-varying displacement of a membrane subject to external forces, etc. Randomness is intrinsic to the mathematical formulation of many phenomena, such as fluctuation in the stock market, or noise in communication networks. Control theory of distributed parameter systems and stochastic systems focuses on physical phenomena which are governed by partial differential equations, delay-differential equations, integral differential equations, etc., and stochastic differential equations of various types. This has been a fertile field of research with over 40 years of history, which continues to be very active under the thrust of new emerging applications.Among the subjects covered are: * Control of distributed parameter systems; * Stochastic control; * Applications in finance/insurance/manufacturing; * Adapted control; * Numerical approximation . It is essential reading for applied mathematicians, control theorists, economic/financial analysts and engineers.
When analyzing systems with a large number of parameters, the dimen sion of the original system may present insurmountable difficulties for the analysis. It may then be convenient to reformulate the original system in terms of substantially fewer aggregated variables, or macrovariables. In other words, an original system with an n-dimensional vector of states is reformulated as a system with a vector of dimension much less than n. The aggregated variables are either readily defined and processed, or the aggregated system may be considered as an approximate model for the orig inal system. In the latter case, the operation of the original system can be exhaustively analyzed within the framework of the aggregated model, and one faces the problems of defining the rules for introducing macrovariables, specifying loss of information and accuracy, recovering original variables from aggregates, etc. We consider also in detail the so-called iterative aggregation approach. It constructs an iterative process, at. every step of which a macroproblem is solved that is simpler than the original problem because of its lower dimension. Aggregation weights are then updated, and the procedure passes to the next step. Macrovariables are commonly used in coordinating problems of hierarchical optimization."
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems. Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics. |
![]() ![]() You may like...
Numerical Engineering Optimization…
Andreas Oechsner, Resam Makvandi
Hardcover
R1,535
Discovery Miles 15 350
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,916
Discovery Miles 29 160
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,324
Discovery Miles 63 240
Nonsmooth Optimization and Its…
Seyedehsomayeh Hosseini, Boris S. Mordukhovich, …
Hardcover
R2,873
Discovery Miles 28 730
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,924
Discovery Miles 29 240
Stochastic Optimal Control in Infinite…
Giorgio Fabbri, Fausto Gozzi, …
Hardcover
R6,564
Discovery Miles 65 640
Nonlinear Industrial Control Systems…
Michael J. Grimble, Pawel Majecki
Hardcover
R6,491
Discovery Miles 64 910
|