![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author's skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 - when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on "Stochastics of Environmental and Financial Economics (SEFE)", being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed. Integrating the author's own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.
This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an optimization task. The book has been structured so that each chapter can be read independently from the others. It can serve as reference book for students and researchers with basic knowledge in image processing and EC methods.
Featuring original research from well-known experts in the field of sliding mode control, this book presents new design schemes for a useful and practical optimal control with very few impractical assumptions. The results presented allow optimal control theory to grow in its applicability to real-world systems. On the cutting-edge of optimal control research, this book is an excellent resource for both graduate students and researchers in engineering, mathematics, and optimal control.
This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models - i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems - for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in Joao Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos's past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos's work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: Deterministic global optimization Variational inequalities and equilibrium problems Approximation and complexity in numerical optimization Non-smooth optimization Statistical models and data mining Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.
The book presents new developments in the dynamic modeling and optimization methods in environmental economics and provides a huge range of applications dealing with the economics of natural resources, the impacts of climate change and of environmental pollution, and respective policy measures. The interrelationship between economic activities and environmental quality, the development of cleaner technologies, the switch from fossil to renewable resources and the proper use of policy instruments play an important role along the path towards a sustainable future. Biological, physical and economic processes are naturally involved in the subject, and postulate the main modelling, simulation and decision-making tools: the methods of dynamic optimization and dynamic games.
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book's value as a most welcome reference text on this subject.
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, numerical dynamical systems, molecular dynamics and ocean/atmosphere dynamics, nonequilibrium statistical mechanics. The volume will serve as a valuable reference for mathematicians, physicists, engineers, biologists and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open or non-equilibrium behavior.
Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.
This book exposes a number of mathematical models for fracture of growing difficulty. All models are treated in a unified way, based on incremental energy minimization. They differ from each other by the assumptions made on the inelastic part of the total energy, here called the "cohesive energy". Each model describes a specific aspect of material response, and particular care is devoted to underline the correspondence of each model to the experiments. The content of the book is a re-elaboration of the lectures delivered at the First Sperlonga Summer School on Mechanics and Engineering Sciences in September 2011. In the year and a half elapsed after the course, the material has been revised and enriched with new and partially unpublished results. Significant additions have been introduced in the occasion of the course "The variational approach to fracture and other inelastic phenomena", delivered at SISSA, Trieste, in March 2013. The Notes reflect a research line carried on by the writer over the years, addressed to a comprehensive description of the many aspects of the phenomenon of fracture, and to its relations with other phenomena, such as the formation of microstructure and the changes in the material's strength induced by plasticity and damage. Reprinted from the Journal of Elasticity, volume 112, issue 1, 2013.
This book clearly shows the importance, usefulness, and powerfulness of current optimization technologies, in particular, mixed-integer programming and its remarkable applications. It is intended to be the definitive study of state-of-the-art optimization technologies for students, academic researchers, and non-professionals in industry. The chapters of this book are based on a collection of selected and extended papers from the "IMI Workshop on Optimization in the Real World" held in October 2014 in Japan.
This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector optimization and multi-criteria decision-making, mathematical finance and economics as well as [set-valued] variational analysis.
This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.
With this brief, the authors present algorithms for model-free stabilization of unstable dynamic systems. An extremum-seeking algorithm assigns the role of a cost function to the dynamic system's control Lyapunov function (clf) aiming at its minimization. The minimization of the clf drives the clf to zero and achieves asymptotic stabilization. This approach does not rely on, or require knowledge of, the system model. Instead, it employs periodic perturbation signals, along with the clf. The same effect is achieved as by using clf-based feedback laws that profit from modeling knowledge, but in a time-average sense. Rather than use integrals of the systems vector field, we employ Lie-bracket-based (i.e., derivative-based) averaging. The brief contains numerous examples and applications, including examples with unknown control directions and experiments with charged particle accelerators. It is intended for theoretical control engineers and mathematicians, and practitioners working in various industrial areas and in robotics.
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer's works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
This text presents and studies the method of so -called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: * complexity and structure in model predictive control (MPC); * collaborative MPC; * distributed MPC; * optimization-based analysis and design; and * applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms-fault detection, for example-and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderon-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painleve problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers. |
![]() ![]() You may like...
Discovering Computers, Essentials…
Susan Sebok, Jennifer Campbell, …
Paperback
Stream-Tube Method - A Complex-Fluid…
Jean-Robert Clermont, Amine Ammar
Hardcover
R5,380
Discovery Miles 53 800
Architecture and Security Issues in Fog…
Sam Goundar, S. Bharath Bhushan, …
Hardcover
R6,759
Discovery Miles 67 590
|