Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Calculus of variations
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.
The literature on equilibrium behavior of customers and servers in queuing systems is rich. However, there is no comprehensive survey of this field. Moreover, what has been published lacks continuity and leaves many issues uncovered. One of the main goals of this book is to review the existing literature under one cover. Other goals are to edit the known results in a unified manner, classify them and identify where and how they relate to each other, and fill in some gaps with new results. In some areas we explicitly mention open problems. We hope that this survey will motivate further research and enable researchers to identify important open problems. The models described in this book have numerous applications. Many examples can be found in the cited papers, but we have chosen not to include applications in the book. Many of the ideas described in this book are special cases of general principles in Economics and Game Theory. We often cite references that contain more general treatment of a subject, but we do not go into the details. we have highlighted the results For each topic covered in the book, that, in our opinion, are the most important. We also present a brief discussion of related results. The content of each chapter is briefly de scribed below. Chapter 1 is an introduction. It contains basic definitions, models and solution concepts which will be used frequently throughout the book.
This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating the real-world relevance of best-practice Hilbert space aware approaches to PDE-constrained optimisation problems. Many optimisation problems that arise in a real-world context are constrained by partial differential equations (PDEs). That is, the system whose configuration is to be optimised follows physical laws given by PDEs. This book describes general Hilbert space formulations of optimisation algorithms, thereby facilitating optimisations whose controls are functions of space. It demonstrates the importance of methods that respect the Hilbert space structure of the problem by analysing the mathematical drawbacks of failing to do so. The approaches considered are illustrated using the optimisation problem arising in tidal array layouts mentioned above. This book will be useful to readers from engineering, computer science, mathematics and physics backgrounds interested in PDE-constrained optimisation and their real-world applications.
The common experience in solving control problems shows that optimal control as a function of time proves to be piecewise analytic, having a finite number of jumps (called switches) on any finite-time interval. Meanwhile there exists an old example proposed by A.T. Fuller [1961) in which optimal control has an infinite number of switches on a finite-time interval. This phenomenon is called chattering. It has become increasingly clear that chattering is widespread. This book is devoted to its exploration. Chattering obstructs the direct use of Pontryagin's maximum principle because of the lack of a nonzero-length interval with a continuous control function. That is why the common experience appears misleading. It is the hidden symmetry of Fuller's problem that allows the explicit solution. Namely, there exists a one-parameter group which respects the optimal trajectories of the problem. When published in 1961, Fuller's example incited curiosity, but it was considered only "interesting" and soon was forgotten. The second wave of attention to chattering was raised about 12 years later when several other examples with optimal chattering trajectories were 1 found. All these examples were two-dimensional with the one-parameter group of symmetries.
This book focuses on the fields of fuzzy logic, bio-inspired algorithm; especially bee colony optimization algorithm and also considering the fuzzy control area. The main idea is that this areas together can to solve various control problems and to find better results. In this book we test the proposed method using two benchmark problems; the problem for filling a water tank and the problem for controlling the trajectory in an autonomous mobile robot. When Interval Type-2 Fuzzy Logic System is implemented to model the behavior of systems, the results show a better stabilization, because the analysis of uncertainty is better. For this reason we consider in this book the proposed method using fuzzy systems, fuzzy controllers, and bee colony optimization algorithm improve the behavior of the complex control problems.
Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Muller), and Aspects of PDEs related to fluid flows (Vladimir Sverak). These lectures are addressed to graduate students and researchers in the field.
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
These lecture notes provide a self-contained introduction to regularity theory for elliptic equations and systems in divergence form. After a short review of some classical results on everywhere regularity for scalar-valued weak solutions, the presentation focuses on vector-valued weak solutions to a system of several coupled equations. In the vectorial case, weak solutions may have discontinuities and so are expected, in general, to be regular only outside of a set of measure zero. Several methods are presented concerning the proof of such partial regularity results, and optimal regularity is discussed. Finally, a short overview is given on the current state of the art concerning the size of the singular set on which discontinuities may occur. The notes are intended for graduate and postgraduate students with a solid background in functional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics.
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hoermander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincare's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schroedinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.
"This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book." --MATHSCINET
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines."
This volume on mathematical control theory contains high quality articles covering the broad range of this field. The internationally renowned authors provide an overview of many different aspects of control theory, offering a historical perspective while bringing the reader up to the very forefront of current research.
The field of multiple criteria decision analysis (MCDA), also termed multiple criteria decision aid, or multiple criteria decision making (MCDM), has developed rapidly over the past quarter century and in the process a number of divergent schools of thought have emerged. This can make it difficult for a new entrant into the field to develop a comprehensive appreciation of the range of tools and approaches which are available to assist decision makers in dealing with the ever-present difficulties of seeking compromise or consensus between conflicting inter ests and goals, i.e. the "multiple criteria". The diversity of philosophies and models makes it equally difficult for potential users of MCDA, i.e. management scientists and/or decision makers facing problems involving conflicting goals, to gain a clear understanding of which methodologies are appropriate to their particular context. Our intention in writing this book has been to provide a compre hensive yet widely accessible overview of the main streams of thought within MCDA. We aim to provide readers with sufficient awareness of the underlying philosophies and theories, understanding of the practi cal details of the methods, and insight into practice to enable them to implement any of the approaches in an informed manner. As the title of the book indicates, our emphasis is on developing an integrated view of MCDA, which we perceive to incorporate both integration of differ ent schools of thought within MCDA, and integration of MCDA with broader management theory, science and practice.
Set-valued analysis is an essential tool for the mathematical formulation of many real-life situations, e.g., equilibrium theory in mathematical economics. This work offers the first comprehensive treatment in book form of the fairly new subdiscipline of enlargements of maximal monotone operators, including several important new results in the field. In the last decades, with the development of nonsmooth optimization, effective algorithms have been developed to solve these kinds of problems, such as nonsmooth variational inequalities. Several of these methods, such as bundle methods for variational problems, are fully developed and analyzed in this book. The first chapters provide a self-contained review of the basic notions and fundamental results in set-valued analysis, including set convergence and continuity of set-valued mappings together with many important results in infinite-dimensional convex analysis, leading to the classical fixed point results due to Ekeland, Caristi and Kakutani. Next, an in-depth introduction to monotone operators is developed, emphasizing results related to maximality of subdifferentials and of sums of monotone operators. Building on this foundational material, the second part of the monograph contains new results (all of them established during the last decade) on the concept of enlargements of monotone operators, with applications to variational inequalities, bundle-type methods, augmented Lagrangian methods, and proximal point algorithms. Audience:
This collection of essays brings together some articles on dynamic optimization models that exhibit chaotic behavior. Chapters 3, 4, 5, 6, 7, and 9 appeared in a Symposium on Chaotic Dynamical Systems in Economic Theory (Volume 4, Number 5, 1994). Also, Chapters 10,11, and 12 appeared in the Journal of Economic The ory. We would like to thank the authors, and Academic Press for permission to reprint. We are grateful to Professor C.D. Aliprantis for suggesting the idea of a book structured around the Economic Theory Symposium, and without the support and patience of Dr. Mueller this project could not have been completed. We would like to thank Ms. Amy Gowan who cheerfully per formed the arduous task of typing the manuscript. Thanks are also due to Xiao Qing Yu, Tridip Ray and Malabika Majumdar for their help at various stages in the preparation of the manuscript. For a course on dynamic optimization addressed to students with a good background in economic theory and real analysis, one can assign Chapter 2 as a partial introduction to the basic tech niques. Chapters 3 and 4 can be assigned to provide examples of simple optmization models generating complicated behavior."
R.E. Kalman: Lectures on controllability and observability.- E. Kulikowski: Controllability and optimum contro.- A. Straszak: Supervisory controllabilityl.- L. Weiss: Lectures on controllability and observability.
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
Fourier analysis has many scientific applications - in physics,
number theory, combinatorics, signal processing, probability
theory, statistics, option pricing, cryptography, acoustics,
oceanography, optics and diffraction, geometry, and other areas. In
signal processing and related fields, Fourier analysis is typically
thought of as decomposing a signal into its component frequencies
and their amplitudes.
This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB (R) brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics. Covering simple calculations with MATLAB (R), relevant plots, integration, and optimization, the numerous problem sets encourage practice with newly learned skills that cultivate the reader's understanding of the material. Significant examples illustrate each topic, and fundamental physical applications such as Kepler's Law, electromagnetism, fluid flow, and energy estimation are brought to prominent position. Perfect for use as a supplement to any standard multivariable calculus text, a "mathematical methods in physics or engineering" class, for independent study, or even as the class text in an "honors" multivariable calculus course, this textbook will appeal to mathematics, engineering, and physical science students. MATLAB (R) is tightly integrated into every portion of this book, and its graphical capabilities are used to present vibrant pictures of curves and surfaces. Readers benefit from the deep connections made between mathematics and science while learning more about the intrinsic geometry of curves and surfaces. With serious yet elementary explanation of various numerical algorithms, this textbook enlivens the teaching of multivariable calculus and mathematical methods courses for scientists and engineers.
Linear Analysis. Linear Spaces. Linear Transformations and Matrices. Determinants. Eigenvalues and Eigenvectors. Eigenvalues of Operators Acting on Euclidean Spaces. Linear Differential Equations. Systems of Differential Equations. Nonlinear Analysis. Differential Calculus of Scalar and Vector Fields. Applications of the Differential Calculus. Line Integrals. Special Topics. Set Functions and Elementary Probability. Calculus of Probabilities. Introduction to Numerical Analysis.
0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets."
At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results. |
You may like...
Solvability, Regularity, and Optimal…
Pierluigi Colli, Angelo Favini, …
Hardcover
R3,622
Discovery Miles 36 220
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,831
Discovery Miles 28 310
Variational Analysis of Regular Mappings…
Alexander D. Ioffe
Hardcover
R4,265
Discovery Miles 42 650
Fault Diagnosis Inverse Problems…
Lidice Camps Echevarria, Orestes Llanes Santiago, …
Hardcover
R3,028
Discovery Miles 30 280
Recent Developments in Fuzzy Logic and…
Shahnaz N. Shahbazova, Michio Sugeno, …
Hardcover
R6,156
Discovery Miles 61 560
Nonlinear Analysis - Approximation…
Qamrul Hasan Ansari
Hardcover
Nonlinear Industrial Control Systems…
Michael J. Grimble, Pawel Majecki
Hardcover
R6,324
Discovery Miles 63 240
|