![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This edition retains its pedagogical structure but has been extensively revised and updated. Features advances in the field pertaining to the latest developments on fatigue and fracture as well as environmental aspects of some hazardous materials and their effects on glass during long term storage. Contains a new description of the oxidation state of glass and its components based on the phase rule. Includes a new chapter on chemical durability with recent information regarding corrosion of glass and radioactive waste disposal.
Wisdom is the principal thing; therefore get wisdom; and with all thy getting, get understanding. Proverbs 4:7 In the early chapters of the book of Proverbs there is a strong emphasis on three words: knowledge, understanding, and wisdom. Perhaps we can apply these words to our philosophy behind the technology of Predictive Process Control. Knowledge is the accumulation of information provided by education as we begin to store the data in our brains that should prepare us for the challenges of the manufacturing environment. It applies to every level and every opportunity of education, formal and informal. This is simply to Know, without any requirement except a good memory, and is the basis for the following two thoughts. Understanding is the assimilation of knowledge, or the thinking process, as we begin to arrange and rearrange the data we Know for quick recall as it may be needed. This also applies to every level and opportunity of education. It is Know-Why based upon what we Know, and it requires some scepticism of oversimplified answers and a hunger for mental consistency. Wisdom is the application of both knowledge and understanding in real life enterprises. As we apply both our knowledge and understanding in those situations, all three are further enhanced by each progressive experience. This is that wonderful Know-How - to apply our education based upon Know-why, which was based upon Knowledge - which provides the confidence we need to advance in all phases of performance.
This thesis reports on innovations in the design and direct synthesis of graphene-based woven fabric (GWF) and multi-layer graphene/porous carbon woven fabric films (MLG/PC) by means of chemical vapor deposition (CVD), using woven copper mesh and nickel mesh as the template. Further, it presents the successful applications of these materials as a platform for solar cells, super capacitors and sensors, making it especially of interest to researchers and graduate students in the fields of materials sciences, nanotechnology and renewable energy.
This book focus on the challenges faced by cutting materials with superior mechanical and chemical characteristics, such as hardened steels, titanium alloys, super alloys, ceramics and metal matrix composites. Aspects such as costs and appropriate machining strategy are mentioned. The authors present the characteristics of the materials difficult to cut and comment on appropriate cutting tools for their machining. This book also serves as a reference tool for manufacturers working in industry.
This book provides an overview of eco-friendly resins and their composite materials covering their synthesis, sources, structures and properties for different industrial applications to support the ongoing research and development in eco-friendly and renewable commercial products. It provides comparative discussions on the properties of eco-friendly resins with other polymer composites. It is a useful reference on bio-based eco-friendly polymer resins, wood-based composites, natural fibers and biomass materials for the polymer scientists, engineers and material scientists.
This book exhibits novel semiconductor black phosphorous (BP) materials that are developed beyond other 2D materials (graphene and TMDs). It accurately reviews their manufacture strategies, properties, characterization techniques and different utilizations of BP-based materials. It clarifies all perspectives alongside down to earth applications which present a future direction in the biomedical, photo, environmental, energy, and other related fields. Hence, the sections accentuate the basic fundamentals, synthesis, properties, applications, state-of-the-art studies about the BP-based materials through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise. It will appeal to researchers, scientists and in addition understudies from various teaches, for example, semiconductor innovation, energy and environmental science. The book content incorporates industrial applications and fills the gap between the exploration works in the lab and viable applications in related ventures.
This collection focuses on the characterization of minerals, metals, and materials as well as the application of characterization results on the processing of these materials. Papers cover topics such as clays, ceramics, composites, ferrous metals, non-ferrous metals, minerals, electronic materials, magnetic materials, environmental materials, advanced materials, and soft materials. In addition, papers covering materials extraction, materials processing, corrosion, welding, solidification, and method development are included. This book provides a current snapshot of characterization in materials science and its role in validating, informing, and driving current theories in the field of materials science. This volume will serve the dual purpose of furnishing a broad introduction of the field to novices while simultaneously serving to keep subject matter experts up-to-date.
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films ("1-dimensional" confinement) (ii) in pores or tubes with nanometric diameters ("2-dimensional" confinement) (iii) as micelles embedded in matrices ("3-dimensional") or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore diameters. ""Dynamics in Confinement"" sums up the present state-of-the-art and introduces to the analytical methods of choice for the study of dynamics in nanometer-scale confinement.
This book provides expert coverage of the physical properties of new non-crystalline solids-tellurite glass smart materials-and the latest applications of these materials, offering insights into innovative applications for radiation shielding, energy harvesting, laser devices, and temperature sensing, among others. In particular, there is a focus on optics, energy conversion technology and laser devices, structural and luminescence properties for laser applications, optothermal and optical properties in the presence of gold nanoparticles, and lanthanide doped zinc oxyfluoro-tellurite glass as a new smart material. Additional chapters address the properties and uses of tellurite glasses in optical sensing, the significance of Near Infrared (NIR) emissions, solar cells, solar energy harvesting, luminescent displays, and the development of bioactive-based tellurite-lanthanide (Te-Ln) doped hydroxyapatite composites for biomedical applications. As the world's reliance on glass increases, this book serves as a link between the latest findings on tellurite glasses and real-world technological advancement. Academic researchers and industry professionals alike will find this book a useful resource in keeping abreast of recent developments in the field.
This book broadens the knowledge of tribology. This book is evolved out of current research trends on tribological performance of systems related to nano tribology, rheology, engines, polymer brushes, composite materials, erosive wear and lubrication. The book deals with enhancing the ideas on tribological properties, the different types of wear phenomenon and lubrication enhancement. Further, the tribological performance of systems, whether nano, micro or macro-scale, depends upon a large number of external parameters and important among them are temperature, contact pressure and relative speed. Thus, the book focus on the theoretical aspects to industrial applications of tribology.
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.
This book presents a unified approach to fracture behavior of natural and synthetic fiber-reinforced polymer composites on the basis of fiber orientation, the addition of fillers, characterization, properties and applications. In addition, the book contains an extensive survey of recent improvements in the research and development of fracture analysis of FRP composites that are used to make higher fracture toughness composites in various applications.The FRP composites are an emerging area in polymer science with many structural applications. The rise in materials failure by fracture has forced scientists and researchers to develop new higher strength materials for obtaining higher fracture toughness. Therefore, further knowledge and insight into the different modes of fracture behavior of FRP composites are critical to expanding the range of their application.
The first book to focus on the role of glass as a material of critical importance to the wine industry For centuries glass has been the material of choice for storing, shipping, and sipping wine. How did that come to pass, and why? To what extent have glassmaking and wine making co-evolved over the centuries? The first book to focus on the role of glass as a material of critical importance to the wine industry, The Glass of Wine answers these and other fascinating questions. The authors deftly interweave compelling historical, technical, and esthetic narratives in their exploration of glass as the vessel of choice for holding, storing, and consuming wine. They discuss the traditions informing the shapes and sizes of wine bottles and wine glasses, and they demystify the selection of the "right glass" for red versus white varietals, as well as sparkling and dessert wines. In addition, they review the technology of modern glassmaking and consider the various roles glass plays in wineries especially in the enologist's laboratory. And they consider the increasing use of aluminum and polymer containers and its potential impact on the central role of glass as the essential material for wine appreciation. * The first book focusing on the role of glass and its central importance to the wine industry * Written by a glass scientist at UC Davis, home of the premier viticulture and enology program in North America * Interlards discussions of the multi-billion-dollar glass and wine industries with valuable technical insights for scientists, engineers, and wine enthusiasts alike * Illustrates the wide spectrum of bottles, carafes, decanters, and drinking glasses with an abundance of exquisite full-color photos Both an authoritative guide and a compelling read, The Glass of Wine tells the story of the centuries-old marriage between an endlessly fascinating material and a celebrated beverage. It is sure to have enormous appeal among ceramic and glass professionals, wine makers, and oenophiles of all backgrounds.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
This book summarizes recent progress in cellulose chemistry. The last 10 years have witnessed important developments, because sustainability is a major concern. Biodegradable cellulose derivatives, in particular esters and ethers, are employed on a large scale. The recent developments in cellulose chemistry include unconventional methods for the synthesis of derivatives, introduction of novel solvents, e.g. ionic liquids, novel approaches to regioselective derivatization of cellulose, preparation of nano-particles and nano-composites for specific applications. These new developments are discussed comprehensively. This book is aimed at researchers and professionals working on cellulose and its derivatives. It fills an important gap in teaching, because most organic chemistry textbooks concentrate on the relatively simple chemistry of mono- and disaccharides. The chemistry and, more importantly, the applications of cellulose are only concisely mentioned.
This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays,
casting it into desired shapes and then firing it to a high
temperature, a process known as 'vitrification'. The relatively
late development of metallurgy was contingent on the availability
of ceramics and the know-how to mold them into the appropriate
forms. Because of the characteristics of ceramics, they offer great
advantages over metals in specific applications in which hardness,
wear resistance and chemical stability at high temperatures are
essential. Clearly, modern ceramics manufacturing has come a long
way from the early clay-processing fabrication method, and the last
two decades have seen the development of sophisticated techniques
to produce a large variety of ceramic material. This work will also be useful as a reference for materials scientists, not only to those who specialize in ceramics."
This book presents important developments in green chemistry, with a particular focus on composite materials chemistry. In recent years, natural polymers have generated much interest due to their unique morphology and physical properties. The book gives an introductory overview of green composites, and discusses their emerging interdisciplinary applications in various contemporary fields. The chapters, written by leading experts from industry and academia, cover different aspects of biodegradable green composites and natural polymers including their processing, manufacturing, properties, and applications. This book will be a valuable reference for beginners, researchers as well as industry professionals interested in biodegradable composites.
This book focuses on the matrix cracking behavior in ceramic-matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.
This book covers a wide range of conventional and non-conventional machining processes of various composite materials, including polymer and metallic-based composites, nanostructured composites and green/natural composites. It presents state-of-the-art academic work and industrial developments in material fabrication, machining, modelling and applications, together with current practices and requirements for producing high-quality composite components. There are also dedicated chapters on physical properties and fabrication techniques of different composite material groups. The book also has chapters on health and safety considerations when machining composite materials and recycling composite materials. The contributors present machining composite materials in terms of operating conditions; cutting tools; appropriate machines; and typical damage patterns following machining operations. This book serves as a useful reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, and machine tool designers. It can also benefit final-year undergraduate and postgraduate students, as it provides comprehensive information on the machining of composite materials to produce high-quality final components. The book chapters were authored by experienced academics and researchers from four continents and nine countries including Canada, China, Egypt, India, Malaysia, Portugal, Singapore, United Kingdom and the USA.
This book is a collection of papers from the symposium honoring Professor Sidney Diamond of the School of Civil Engineering, Purdue University, one of the leading scholars in the field of concrete science. The volume contains: Chemical and physical aspects of mechanisms of hydration of cements; development of concrete microstructure and mechanical properties; and various aspect of mechanisms of concrete deterioration, including alkali-silica reaction (ASR), freezing-thawing, and corrosion of reinforcement. Includes Dr. Diamond's paper, "Concrete Porosity Revisited."
Stretch Blow Molding, Third Edition, provides the latest on the blow molding process used to produce bottles of the strength required for carbonated drinks. In this updated handbook, Ottmar Brandau introduces the technology of stretch blow molding, explores practical aspects of designing and running a production line, and looks at practical issues for quality control and troubleshooting. As an experienced engineer, manager, and consultant, Brandau's focus is on optimizing the production process, improving quality, and reducing cycle time. In this new edition, the author has thoroughly reviewed the content of the book, providing updates on new developments in stretch blow molding, including neck sizes, new equipment and processes, and the economics of the process. The book is a thoroughly practical handbook which provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses, allowing them to save money, increase output, and improve competitiveness by adopting new technologies.
This volume contains papers on phase composition and quantitative x-ray powder diffraction analysis of Portland cement and clinker; neutron diffraction and neutron scattering studies of cement; scanning probe microscopy: a new view of the mineral surface; the stereological and statistical properties of entrained air voids in concrete: a mathematical basis for air void system characterization; fresh concrete rheology: recent developments; early age behavior of cement-based materials; transport mechanisms and damage: current issues in permeation characteristics of concrete; the use of silica fume to control expansion due to alkali-aggregate reactivity in concrete: a review; delayed ettringite formation in concrete: recent developments and future directions; use of durability indexes to achieve durable cover concrete in reinforced concrete structures; and microfiller partial substitution for cement. |
You may like...
Hermes in the Academy - Ten Years' Study…
Wouter Hanegraaff, Pijnenburg
Paperback
R1,372
Discovery Miles 13 720
Deep Learning and Convolutional Neural…
Le Lu, Xiaosong Wang, …
Hardcover
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
Mathematical Modeling and Applications…
Albert C.J. Luo, Huseyin Merdan
Hardcover
R1,860
Discovery Miles 18 600
Disability Benefits, Welfare Reform and…
C Lindsay, D Houston
Hardcover
R1,848
Discovery Miles 18 480
90 Rules For Entrepreneurs - Your Guide…
Marnus Broodryk
Paperback
(4)
|