![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world's foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.
Frank Handle ] 1.1 What to Expect For some time now, I have been toying around with the idea of writing a book about "Ceramic Extrusion," because to my amazement I have been unable to locate a single existing, comprehensive rundown on the subject - much in contrast to, say, plastic extrusion and despite the fact that there are some outstanding contributions to be found about certain, individual topics, such as those in textbooks by Reed 1], Krause 2], Bender/Handle ] 3] et al. By way of analogy to Woody Allen's wonderfully ironic movie entitled "Eve- thing You Always Wanted to Know about Sex," I originally intended to call this book "Everything You Always Wanted to Know about Ceramic Extrusion," but - ter giving it some extra thought, I eventually decided on a somewhat soberer title. Nevertheless, my companion writers and I have done our best - considering our target group and their motives - not to revert to the kind of jargon that people use when they think the less understandable it sounds, the more scienti c it appears. This book addresses all those who are looking for a lot or a little general or selective information about ceramic extrusion and its sundry aspects. We realize that most of our readers will not be perusing this book just for fun or out of intellectual curiosity, but because they hope to get some use out of it for their own endeavours."
Practical production of ordinary and special, high performance concretes and their behaviour and properties when fresh are the main themes of this book. It derives from the International RILEM Conference held in Paisley, Scotland in June 1996, and represents the culmination of the work of two RILEM Technical Committees (145 WSM Workability of Special Mixes, and 150 ECM Efficiency of Concrete Mixers). Very significant advances have been made recently in the development of concrete with outstanding properties. Such advances in research must be matched by progress in the technology of concrete production. This book focuses on production methods and on workability and handling, two fundamental and closely linked stages of the concrete construction process. It has a strongly practical emphasis, with many contributions showing how to build effectively using the many high performance concretes which have progressed from research into construction in recent years. The main themes covered are: production mixers and mixing processes; production methods; sprayed and very dry precasting mixes; fibre reinforced concrete; flowing and superfluid mixes; rheology; test methods; mix design and models; special cements and concretes.
This book discusses the impact of different range of velocities (low, high, ballistic and hyper-velocity impact) on composites. Presented through experimental and numerical analysis, the book goes beyond impact event analysis and also covers the after-impact phenomena, including flexural and compression and damage analysis through destructive and non-destructive evaluations. The analyses presented from either experimental or numerical simulations are composed of micro and macrographs images, illustrations, tables and figures with inclusive discussions and supportive evidences from recent studies on composites. This book also highlights the potential applications of composites through the lens of their impact properties, in different industries such as automotive and defence applications. Generally, this book benefits wider range of readers including the industrial practitioners, researchers, lecturer and students, who are working in the fields related to impact and damage analysis, including the structural health monitoring of composites, either experimentally or numerically.
This book provides knowledge on the finishing of substrates with a functionalising coating, emphasizing on technical textiles. The spectrum of topics covers different substrates and coating materials, process engineering and equipment components as well as complex machinery. The reader is presented with an overview of the technical capabilities of substrate coating, enabling the practitioner to design and implement new products. Furthermore the author goes into detail on various air pollution control procedures and economic issues of asset valuation.
Conservation and Restoration of Glass is an in-depth guide to the materials and practices required for the care and preservation of glass objects. It provides thorough coverage of both theoretical and practical aspects of glass conservation. This new edition of Newton and Davison's original book, Conservation of Glass, includes sections on the nature of glass, the historical development and technology of glassmaking, and the deterioration of glass. Professional conservators will welcome the inclusion of recommendations for examination and documentation. Incorporating treatment of both excavated glass and historic and decorative glass, the book provides the knowledge required by conservators and restorers and is invaluable for anyone with glass objects in their care.
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
Drawing from the third edition of the bestselling Powder Technology Handbook, this book is focused solely on analyzing the fundamental properties and behavior of particles and particle beds. Powder Technology: Fundamentals of Particles, Powder Beds, and Particle Generation concentrates on the most useful analytical methods of observation, measurement, modeling, and prediction. This volume carefully incorporates the progressive work and vision of new authors while retaining the concepts that continue to promote innovative research and applications. The authors highlight new information and developments from areas including surface properties and analysis, particle motion in fluids, mechanical properties of a powder bed, and the design and formation of composite particles. They explain how particles deposit, coagulate, and settle in various media, explore different techniques for generating particles in different states, and detail methods of surface modification. Particularly useful for scientists studying nanoparticle applications, Powder Technology: Fundamentals of Particles, Powder Beds, and Particle Generation incorporates the latest developments in areas including surface properties and analysis, particle motion in fluids, mechanical properties of a powder bed, and the design and formation of composite particles.
Drawing from the third edition of the bestselling Powder Technology Handbook, this book concentrates on handling methods and unit operations for powder and particle processing techniques. Itexamines the purpose and factors involved in each process-including planning, equipment, measurements, and other necessary considerations. This book carefully incorporates the progressive work and vision of new authors while retaining the concepts that continue to promote innovative research and applications. In addition to detailing the purpose and implementation of processes including kneading, drying, filtration, and powder coating, the authors highlight recent developments in combustion and heating, electrostatic powder coating, and simulation. They also emphasize practical information including multipurpose equipment, instrumentation for key measurements, and modeling techniques. The text concludes with a review of recent data on the health effects of small particles and the types of protective devices that are currently available. Powder Technology: Handling and Operations, Process Instrumentation, and Working Hazards offers material scientists and chemical engineers a well-rounded guide to utilizing particle and powder processes for a rapidly expanding array of applications.
Emphasizes the importance of surface and colloid chemistry in the manufacture of high-performance ceramics. Examines processing-property relationships, powderproductionandcharacte6zation,the dispersion properties of powders in liquids, the rheology of concentrated suspensions, and the surface and colloid chemistry aspects of the most widely used forming methods.
Many believe that the silicon/information age is heading to the Age of Biology and that the next frontier in ceramics will most likely require molecular level or nanoscale control. What, then, is the role of ceramics in the age of biology? As we change from an energy-rich society to an energy-declining society, how can ceramic materials appease the problem? This new edition of Chemical Processing of Ceramics offers a scientific and technological framework for achieving creative solutions to these questions. Edited by experts and containing chapters by leading researchers in the field, the book uses an interdisciplinary approach to cover topics ranging from starting materials to device applications. The book begins with a discussion of starting material, highlighting how to prepare and modify them in the nanoscale range. The chapter authors discuss the synthesis, characterization, and behavior of ceramic powders, the processing of ceramic films via sol-gel technique, and the fabrication of nonoxide ceramics. They also present coverage of several specific thin films, membranes, ferroelectrics, bioceramics, dieletrics, batteries, and superconductors. Although the book is edited, it is organized to reflect the chemical sequence of ceramic processing and the coherent theme of chemical processing for advanced ceramic materials. The coverage of molecular/nanoprocessing techniques that result in new materials will enable researchers and engineers to meet the challenge of producing inorganic materials for use in the applications of the future.
This volume provides broad coverage of key issues related to the role of calcium hydroxide in cements and concrete. It contains critical topics such as the physicochemical role calcium hydroxide plays in hydration and deterioration of cementing properties as well as the implications of the presence of calcium hydroxide on the future of Portland cement, blended and specialty cements, and ecology of cement production.
This book is a handy reference for technicians who want to understand the nature, properties and applications, of engineering ceramics. It meets the needs of those working in the ceramics industry, as well as of technicians and engineers involved in the application of ceramic materials. The book is also a comprehensive textbook for introductory ceramic courses since it incorporates all the subjects usually covered by such a course. Similarly, it can be used in graduate courses related to ceramic materials since all of the topics covered are treated in sufficient detail and depth.
This book presents a comprehensive review, evaluation, and summary of the dependence of mechanical properties on grain and particle parameters of monolithic ceramics and ceramic composites. Emphasizing the critical link between fabrication and ceramic performance, the book covers the grain dependence of monolithic properties and the dependence of ceramic, composite properties on grain and particulate parameters. It includes theoretical and conceptual background, pertinent models, experimental results, a data review, discussion, and a summary or recommendations. Illustrations feature microstructural details while graphs plot data on material hardness, compressive strength, and other pivotal variables.
Unique in its focus on functional properties, this book examines the resistive, piezoresistive, thermoelectric, and electromagnetic behavior of multifunctional cement-based materials for reduced cost, improved durability and maintenance, and optimization of various structural designs. The author analyzes cement-based compounds for enhancing a wide-range of structures, including buildings, bridges, highways, automobiles, and aircrafts, exploring characteristics such as vibration damping, strain sensing, electromagnetic and magnetic shielding, electrical conductivity, and thermal insulation for improved structure stability and performance.
This book discusses the properties of fibres used in manufacturing technical textiles, highlighting the importance of material selection in terms of cost, end-user requirements and properties. It also discusses the classification of technical textiles, and describes the details of each category, such as the properties, applications, advantages and drawbacks. As such, it is a valuable resource for all those interested in advanced textiles.
This book is a short survey of magnetochemistry as a promising method for revealing the electronic structure of inorganic substances, particularly solid oxide materials. It is supported by five chapters that describe materials with various structures and applications, showing how the method of magnetic dilution with the aid of other physical methods (electron spin resonance, magnetization, Raman and Moessbauer spectroscopy, and electrical conductivity), accompanied by thorough structural and quantum mechanical studies, may be used for describing the states of atoms and interatomic interactions in multicomponent oxide systems. The book will serve as a guide for researchers in the field of various oxide materials, since it shows the roots for selecting the best structures and qualitative and quantitative compositions of oxide materials on the basis of the knowledge about their electronic structure. It is devoted to some of the most popular structures of multicomponent oxides among modern materials-perovskites and pyrochlores-giving a unified approach to their chemical structure.
This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science, quantum mechanics, and electrodynamics. It is suitable for both advanced undergraduate and graduate students as well as practicing researchers.
This book investigates the enhancement of properties of acacia wood and its surface treatment for high strength bio-composites. It describes the tensile, flexural and impact strength, surface behaviour, morphological analysis, infrared spectral functional analysis, thermal properties analysis and dielectrical properties of acacia wood bio-composites. It reports efforts on the optimization of fabrication techniques to prepare acacia wood reinforced bio-composites based on PLA, PHA, Etc. The book also reports on environmental impact analysis of acacia wood bio-composites. A special chapter is dedicated to the nano-enhancement of acacia wood bio-composites and their possible use in applications in terms of sustainability and economics.
Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of cutting-edge research results. Outlines modern usages of clays and other layered materials, including catalytic and photocatalytic applications. With chapters that explain basic concepts first before delving into more scientifically complex topics, the Handbook of Layered Materials Examines chemistry of clays, pillared clays, and pillared clay heterostructures Scrutinizes layered zirconium phosphates and phosphonates, double hydroxides, manganese oxides, metal chalcogenides, and polysilicates Offers clear descriptions of clay-organic interactions and devotes one chapter specifically to nitroaromatic compound sorption Covers findings in photochemistry and the molecular modeling of surface chemistry Reports recent developments in synthesis, characterization, and host-guest chemistry Contains over 2300 current references, formatting many into expedient tables The companion publication to the lauded Handbook of Zeolite Science and Technology (Marcel Dekker, Inc.) from the same expert editors, this reference is ideal for materials chemists and engineers; chemical engineers; and graduate-level students in these disciplines.
This book discusses the fundamental of bending actuation with a focus on ionic metal composites. It describes the applications of ionic polymer metal composite (IPMC) actuators, from conventional robotic systems to compliant micro robotic systems used to handle the miniature and fragile components during robotic micro assembly. It also presents mathematical modelings of actuators for engineering, biomedical, medical and environmental systems. The fundamental relation of IPMC actuators to the biomimetic systems are also included.
This is a concise, up-to-date book that covers a wide range of important ceramic materials used in modern technology. Chapters provide essential information on the nature of these key ceramic raw materials including their structure, properties, processing methods and applications in engineering and technology. Treatment is provided on materials such as alumina, aluminates, Andalusite, kyanite, and sillimanite. The chapter authors are leading experts in the field of ceramic materials. An ideal text for graduate students and practising engineers in ceramic engineering, metallurgy, and materials science and engineering.
This book focuses on next-generation smart windows which can change their optical-physical properties by reflecting and/or transmitting incoming light radiation to attain comfortable indoor temperatures throughout the year. Offers in-depth discussion of a range of materials and devices related to different technologies used in manufacturing smart windows Discusses basic principles, materials synthesis and thin film fabrication, and optical and electrochemical characterization techniques
This book highlights a novel and robust platform in the form of in-situ characterization setup for creating X-ray computed tomography (XCT)-based textile material twins. In this hybrid experimental-numerical platform, XCT images of different complex fibrous reinforcements at different levels of compaction are acquired. The images are converted into computational models for resin flow simulations. The capabilities of this hybrid framework are applied to a variety of reinforcements used in liquid composite molding processes such as 2D, 3D fabrics and dry tapes. This book is a milestone in the development of virtual manufacturing protocols using material twins of textiles, providing a step closer to the digitalization of advanced composites used in manufacturing processes for industry 4.0. |
You may like...
Become A Better Writer - How To Write…
Donald Powers, Greg Rosenberg
Paperback
Prince, Pen, and Sword: Eurasian…
Maaike Berkel, Jeroen Duindam
Hardcover
R5,037
Discovery Miles 50 370
|