![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This book provides expert coverage of the physical properties of new non-crystalline solids-tellurite glass smart materials-and the latest applications of these materials, offering insights into innovative applications for radiation shielding, energy harvesting, laser devices, and temperature sensing, among others. In particular, there is a focus on optics, energy conversion technology and laser devices, structural and luminescence properties for laser applications, optothermal and optical properties in the presence of gold nanoparticles, and lanthanide doped zinc oxyfluoro-tellurite glass as a new smart material. Additional chapters address the properties and uses of tellurite glasses in optical sensing, the significance of Near Infrared (NIR) emissions, solar cells, solar energy harvesting, luminescent displays, and the development of bioactive-based tellurite-lanthanide (Te-Ln) doped hydroxyapatite composites for biomedical applications. As the world's reliance on glass increases, this book serves as a link between the latest findings on tellurite glasses and real-world technological advancement. Academic researchers and industry professionals alike will find this book a useful resource in keeping abreast of recent developments in the field.
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
With information on the subject of dielectric materials, this volume brings important updates to electronic device engineers and researchers in the area of ferroelectric materials. Topics include materials, processes, properties, and electronic devices based on these materials and systems.
This proceedings focuses on both the scientific and technological aspects of fuel cells and high energy density batteries including solid oxide; proton exchange membrane; and direct methanol fuel cells; lithium-ion batteries; oxide-ion electrolytes; proton conductors; mixed ionic-electronic conductors; electrocatalysts; new materials development; and other related solid state and electrochemical aspects including supercapacitors and oxygen separation membranes.
This volume contains a collection of 40 papers from two symposia: Advanced Dielectric Materials and Multilayer Electronic Devices and High Strain Piezoelectric Materials, Devices and Applications. Topics include fundamental and historical perspectives of dielectric materials; relaxor materials and devices; high strain piezoelectric devices; advanced aspects of powder preparation, characterization, and properties; thin films; materials for low and high frequency applications; processing-structure-property-relationships; and future applications.
Indentation techniques have become widely used in the characterization of brittle solids due to their simplicity, cost effectiveness, rapidness, and maybe most importantly, the indenter itself can be used as a mechanical microprobe in thin films, interfaces, grain boundaries, and nanocomposites. The papers in these proceedings cover measurement techniques, reliability of, and problems associated with this testing method. Also included is the application of nano-indentation technique, as a new frontier in brittle solids characterization, e.g., thin film and nano-composite materials.
Since the beginning of the nanotechnology era, research and development in this field has experienced an explosive growth in academia and industry. Topics covered in this book include synthesis and characterization of nanomaterials, nanoscale phenomena in electronic ceramics, nanostructured bioceramics, industrial development and application, and much more.
This proceedings includes papers presented at the Innovative Processing and Synthesis of Ceramics, Glasses and Composites symposium. Topics include powders, films, coatings, fibers, composites, and functionally graded materials; sol-gel, polymer precursor, and soft chemistry techniques; novel processing and microstructure-property relationships; reaction forming, combustion synthesis, and CVD; oxidation of metals and mechanical alloying; electrophoresis and plasma processing; and mechanism and kinetics of processes.
This proceedings contains papers presented at the Electronics in
Extreme Environments, International Fuel Cells and Related Systems,
and Advanced Dielectrics for Wireless Communications
symposia.
Discusses recent technological applications and advances in sol-gel processing of various ceramics, gels and glasses. Also features historical aspects from the initial discovery of the development of sol-gel processing for ceramics 50 years ago.
This proceedings investigates the relationship between features at the atomic level including oxygen vacancies, stacking faults and site order/disorder, grain boundaries, film-substrate interactions, buffer-superconductor interactions, thermodynamic, transport, and other macroscopic properties. This proceedings will also cover fundamental material properties studies, new growth methods, device and materials integration research, and developments in designing and growing new materials, all involving epitaxial superconducting thin films.
Ceramic matrix composites are likely candidates for high-temperature structural applications in industries such as aerospace, utilities, and transportation. This volume includes papers on advances in basic science and technology of ceramic matrix composites and how these advances can be used to address technological issues faced by industry.
This book, originally published in 1979, was derived from courses offered at the Friedrich-Schiller University in Jena, Germany. The American Ceramic Society republished this text in 1985, adding more than 100 new figures and references to demonstrate recent advances in glass technology. This text represents a comprehensive presentation of the entire field of glass chemistry, especially emphasizing contributions from German pioneers Otto Schott and Ernst Abbe.
This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
This book introduces materials and how advances in materials result in advances in technology and our daily lives. Each chapter covers a particular material, how the material was discovered or invented, when it was first used, how this material has impacted the world, what makes the material important, how it is used today, and future applications. The list of materials covered in this book includes stone, wood, natural fibers, metals, clay, lead, iron, steel, silicon, glass, rubber, composites, polyethylene, rare earth magnet, and alloys.
This third installment draws together research in the different aspects of bioceramics and focuses on the biomedical application of ceramics from a materials science viewpoint. This collection of papers addresses ceramics and glasses used in biomedical, dental and biological applications.
This book includes papers on recent research carried out in the field of metal-matrix composites (MMCs). Processing, microstructure, and mechanical properties of MMCs and unreinforced matrix alloys will be covered with a focus on aluminum, titanium, nickel, and copper MMCs. Those involved in the research of MMCs and unreinforced alloys, particularly in aerospace, space, and automotive materials research, will find this volume indispensible.
This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.
This volume provides expert coverage of the state-of-the-art in sol-gel materials for functional applications in energy, environment and electronics. The use of sol-gel technology has become a hotbed for cutting edge developments in many fields due to the accessibility of advanced materials through low energy processes. The book offers a broad view of this growing research area from basic science through high-level applications with the potential for commercialization and industrial use. Taking an integrated approach, expert chapters present a wide range of topics, from photocatalysts, solar cells and optics, to thin films and materials for energy storage and conversion, demonstrating the combined use of chemistry, physics, materials science and engineering in the search for solutions to some of the most challenging problems of our time.
This book highlights and reviews the renewable feed stock principle of green nanotechnology by focusing the use of plant-derived cardanol as a renewable starting material for the synthesis of advanced materials. The book presents the chemistry of cardanol and methods of isolation, covers macro and nano structures based on cardanol as well as potential applications of such materials. Future perspectives on cardanol based green nanotechnology are highlighted in the final chapter.
This book outlines a methodology for producing macro recycled polypropylene (PP) fibres with optimal mechanical properties and illustrates the reinforcing effects of recycled PP fibres in concrete. It describes the great potential of using these fibres in concrete applications such as footpaths and precast elements. Further, it sheds new light on the environmental impacts of using recycled PP fibres, which are evaluated by means of cradle to gate life cycle assessment based on the Australian context. The use of recycled PP fibre not only helps reduce consumption of virgin materials like steel or plastic but also provides an attractive avenue for recycling plastic waste. The book will appeal to engineers, governments, and solid waste planners, and offers a valuable reference for the plastic waste recycling and plastic fibre reinforced concrete industries.
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
This book focuses on the applications of bioglasses in the biomedical field. It starts with the history and evolution of bioglasses before moving on to the structure and percolation theory, and lastly investigating their current and potential future applications in various fields including dentistry, tissue engineering, bone regeneration, ophthalmology, and drug delivery. The chapters were written by a team of international experts in the field and will be of great interest not only to material scientists, but also to medical doctors and other health sector professionals. |
![]() ![]() You may like...
Ferrite Nanostructured Magnetic…
Jitendra Pal Singh, Keun Hwa Chae, …
Paperback
R6,830
Discovery Miles 68 300
Methodism in Australia - A History
Glen O'Brien, Hilary M. Carey
Paperback
R1,587
Discovery Miles 15 870
|