![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This book summarizes recent advances in the fabrication methods, properties, and applications of various ceramic-filled polymer matrix composites. Surface-modification methods and chemical functionalization of the ceramic fillers are explored in detail, and the outstanding thermal and mechanical properties of polymer-ceramic composites, the modeling of some of their thermal and mechanical parameters, and their major potential applications are discussed along with detailed examples. Aimed at researchers, industry professionals, and advanced students working in materials science and engineering, this work offering a review of a vast number of references in the polymer-ceramic field, this work helps readers easily advance their research and understanding of the field.
This book discusses fundamentals of nanostructured ceramics involving functional, structural and high temperature materials. It provides both solved numerical problems and unsolved problems to enable the reader to envisage the correlation between synthesis process and properties in the perspective of new material development. It serves as a concise text to answer the basics and achieve research goals for academia and industry. Key Features Deals with basic strategy on data interpretation for nanostructured ceramics Proposes to bridge the gap between the nano and bulk properties of nanostructured ceramics Discusses brief schematics and equations to understand the different properties of nano to bulk ceramics Presents mode of data acquisition and interpretation through statistical module and solved numerical Includes unsolved numericals based on properties, data acquisition and interpretation
This book gives details on the processes of agglomeration and its role in modern metal production processes. It starts with a chapter on sinter production, also discussing the quality of sinter and environmental aspects involved on the process. The following chapters focus on pellet production and briquetting of natural and anthropogenic raw materials. It also highlights the best available technologies for briquetting by stiff extrusion.
This book provides an overview of polymer nanocomposites and hybrid materials with polyhedral oligomeric silsesquioxanes (POSS). Among inorganic nanoparticles, functionalized POSS are unique nano-building blocks that can be used to create a wide variety of hybrid and composite materials, where precise control of nanostructures and properties is required. This book describes the influence of incorporation of POSS moieties into (organic) polymer matrices on the mechanical, thermal and flammability behavior of composites and hybrid organic-inorganic materials. Importantly, POSS-containing materials can be bio-functionalized by linking e.g. peptides and growth factors through appropriate surface modification in order to enhance the haemo-compatibility of cardiovascular devices made of these materials. This volume includes descriptions of synthesis routes of POSS and POSS-containing polymeric materials (e.g. based on polyolefines, epoxy resins and polyurethanes), presentation of POSS' role as flame retardants and as biocompatible linker, as well as the depiction of decomposition and ageing processes.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 11: Advanced Vehicle Manufacturing Technology focuses on: *Applications of Aluminum, Magnesium and Zink Alloys , Composites *Advanced Body Manufacturing Technology *Body Corrosion Protection Technology *Welding, Joining and Fastening *Casting Technology *Stamping Technology *Paints, Polymers and Coatings *Exterior Body Panels *Advanced Process Management Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
Perfect for the new technician or engineer entering the ceramics
industry as well as for the ""old hand"" who needs an update on
some aspect of ceramics processing, this resource provides
practical laboratory-oriented answers to such typical processing
problems as particle segregation, agglomeration, contamination,
pressure gradients, adherence to tooling, and temperature gradients
during drying and firing.
Presenting the fundamental topics in glass science and technology, this concise introduction includes glass formation, crystallization, and phase separation. Glass structure models, with emphasis on the oxygen balance method, are presented in detail. Several chapters discuss the viscosity, density, thermal expansion, and mechanical properties of glasses as well as their optical and magnetic behavior and the diffusion of ions, atoms, and molecules and their effect on electrical conductivity, chemical durability, and other related behavior. In addition to the effects of atomic structure on the properties of glasses, the effects of phase separation, crystallization, and water content, which are neglected in most texts, are discussed extensively. Glass technology is addressed in chapters dealing with the raw materials for producing glasses, batch calculations, and the melting and fining processes. The compositions, properties, and production of commercial glasses are also presented. A chapter is devoted to the use of thermal analysis in the study of glasses, including their crystallization behavior. This expanded, third edition, includes new chapters on doped vitreous silica and the, often overlooked, role of halides on glass formation and properties. In addition, solutions to all of the exercises at the ends of chapters are included for the first time in this edition. This introductory text is ideal for undergraduates in materials science, ceramics, or inorganic chemistry. It will also be useful to the graduate student, engineer, or scientist seeking basic knowledge of the formation, properties, and production of glass in support of their work.
Papers from The American Ceramic Society's 31st International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 21-26, 2007. Topics include transparent ceramics for impact resistance, protection against mine blast and fragments, challenges facing ceramic armor manufacturers, novel material concepts and development of valid armor design and characterization tools to predict performance for air and ground vehicles as well as the individual soldier.
This book presents selected peer-reviewed contributions from the 2019 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2019 (Hanoi, Vietnam, 7-10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical-mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.
This volume presents information on the unique topic of chemical sensors. It focuses on the materials, manufacturing, theory and application of sensors. It is a resource that researchers, students, and those involved in the the design and manufacturing of ceramics will find of critical importance.
This thesis addresses the surprising features of zero-temperature statics and dynamics of several spin glass models, including correlations between soft spins that arise spontaneously during avalanches, and the discovery of localized states that involve the presence of two-level systems. It also presents the only detailed historiographical research on the spin glass theory. Despite the extreme simplicity of their definition, spin glasses display a wide variety of non-trivial behaviors that are not yet fully understood. In this thesis the author sheds light on some of these, focusing on both the search for phase transitions under perturbations of Hamiltonians and the zero-temperature properties and responses to external stimuli. After introducing spin glasses and useful concepts on phase transitions and numerics, the results of two massive Monte Carlo campaigns on three-dimensional systems are presented: The first of these examines the de Almeida-Thouless transition, and proposes a new finite-size scaling ansatz, which accelerates the convergence to the thermodynamic limit. The second reconstructs the phase diagram of the Heisenberg spin glass with random exchange anisotropy.
"Principles of Solidification" offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: - Detailed mathematical examples throughout to guide readers - Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors - Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.
Bioceramics are an important class of biomaterials. Due to their desirable attributes such as biocompatibility and osseointegration, as well as their similarity in structure to bone and teeth, ceramic biomaterials have been successfully used in hard tissue applications. In this book, a team of materials research scientists, engineers, and clinicians bridge the gap between materials science and clinical commercialization providing integrated coverage of bioceramics, their applications and challenges. The book is divided into three parts. The first part is a review of classes of medical-grade ceramic materials, their synthesis and processing as well as methods of property assessment. The second part contains a review of ceramic medical products and devices developed, their evolution, their clinical applications and some of the lessons learned from decades of clinical use. The third part outlines the challenges to improve performance and the directions that novel approaches and advanced technologies are taking, to meet these challenges. With a focus on the dialogue between surgeons, engineers, material scientists, and biologists, this book is a valuable resource for researchers and engineers working toward long-lasting, reliable, customized biomedical ceramic and composites devices.
Bioactive Glasses: Materials, Properties and Applications, Second Edition provides revised, expanded and updated content on the current status of this unique material, including its properties, technologies and applications. The book is suitable for those active in the biomaterials and bioengineering field, and includes eight new chapters that cover material types, computational modeling, coatings and applications. Chapters deal with the materials and mechanical properties of bioactive glass and the applications of bioactive glasses, covering their uses in wound healing, maxillofacial surgery and bone tissue engineering, among other topics. With its distinguished editor and expert team of international contributors, the book is an invaluable reference for researchers and scientists in the field of biomaterials, both in academia and industry.
This book provides in-depth coverage of smart materials, including electroactive polymers (EAPs), synthetic muscle, pneumatic artificial muscle, soft pneumatics, hydro-muscle, and other cutting-edge transformational smart material technologies. It looks at ways smart materials respond to stimuli, such as electricity, pressure, temperature, magnetism, or light. State-of-the-art developments in EAP based actuation and pneumatics are covered, including nanotechnology, soft robotics, EAP considerations for NASA applications and thermal control of satellites, control of mirrors using dielectric elastomeric actuators, and biomimetic design and function in robotics and prosthetics. A detailed analysis of the challenges of smart materials on Earth and in space is included, with an interview about considerations and training for Missions to Moon and Mars. This book is a must-read within the smart material and space communities, from tech savvy students to industry professionals.
Reflecting the many changes in the field since the publication of the second edition, Corrosion of Ceramic Materials, Third Edition incorporates more information on bioceramics, including nanomaterials, as well as the weathering of construction materials. Adhering to the original plan of classification by chemistry, this edition reorganizes the topics into four main sections: Fundamentals, Corrosion Analysis, Corrosion of Specific Materials, and Properties and Corrosion. New to the Third Edition New chapters on corrosion by biological sources New chapter on corrosion of architectural materials Additional material on thermal and environmental barrier coatings Expanded chapter on composites More questions and examples New literature sources in each chapter where appropriate With an abundance of practical features and new information, this expanded and completely reorganized third edition helps readers address corrosion problems and create the most corrosion-resistant systems possible. Designed as a reference, it could also be used as a text in a graduate or senior undergraduate course.
Understanding the Basics of Nanoindentation and Why It Is Important Contact damage induced brittle fracture is a common problem in the field of brittle solids. In the case of both glass and ceramics-and as it relates to both natural and artificial bio-materials-it has triggered the need for improved fabrication technology and new product development in the industry. The Nanoindentation Technique Is Especially Dedicated to Brittle Materials Nanoindentation of Brittle Solids highlights the science and technology of nanoindentation related to brittle materials, and considers the applicability of the nanoindentation technique. This book provides a thorough understanding of basic contact induced deformation mechanisms, damage initiation, and growth mechanisms. Starting from the basics of contact mechanics and nanoindentation, it considers contact mechanics, addresses contact issues in brittle solids, and explores the concepts of hardness and elastic modulus of a material. It examines a variety of brittle solids and deciphers the physics of deformation and fracture at scale lengths compatible with the microstructural unit block. Discusses nanoindentation data analysis methods and various nanoindentation techniques Includes nanoindentation results from the authors' recent research on natural biomaterials like tooth, bone, and fish scale materials Considers the nanoindentation response if contact is made too quickly in glass Explores energy issues related to the nanoindentation of glass Describes the nanoindentation response of a coarse grain alumina Examines nanoindentation on microplasma sprayed hydroxyapatite coatings Nanoindentation of Brittle Solids provides a brief history of indentation, and explores the science and technology of nanoindentation related to brittle materials. It also offers an in-depth discussion of indentation size effect; the evolution of shear induced deformation during indentation and scratches, and includes a collection of related research works.
This book focuses on Creep in Ceramics. The book consists of two parts. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics, namely creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.
Functional Glasses and Glass-Ceramics: Processing, Properties and Applications provides comprehensive coverage of the current state-of-the-art on a range of material synthesis. This work discusses the functional properties and applications of both oxide and non-oxide glasses and glass-ceramics. Part One provides an introduction to the basic concept of functional glasses and glass-ceramics, while Part Two describes the functional glasses and glass-ceramics of oxide systems, covering functionalization of glasses by 3d transition metal ion doping, 4f rare earth metal ion doping, crystallization, laser irradiation micro fabrication, incorporation of nanometals, the incorporation of semiconductor coatings, the functionalization for biomedical applications, solid oxide fuel cell (SOFC) sealants, and display devices, and from waste materials. Part Three describes functional glasses and glass-ceramics of non-oxide systems, covering functional chalcogenide and functional halide glasses, glass-ceramics, and functional bulk metallic glasses. The book contains future outlooks and exercises at the end of each chapter, and can be used as a reference for researchers and practitioners in the industry and those in post graduate studies.
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000 C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: * Original reviews of research conducted in the 1960s and 70s * Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. * Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 * Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.
Related Title: Laboratory Scientific Glassblowing: Advanced Techniques and Glassblowing's Place in History'If you are interested in learning about glassblowing techniques for scientific glassware, then this book is an incredible opportunity to learn from a master glassblower. Much of this information is passed down in person, and to have it available in a book such as this is a very rare opportunity that you should not pass up.'IEEE Electrical Insulation MagazineThis book explains and demonstrates the methods involved in scientific glassblowing. It describes elementary to advanced glass manipulation together with technical information on its safe use and development in the laboratory. Edited by Paul Le Pinnet (MBE), a scientific glassblower with over 50 years' experience in the field, experts in glassblowing are brought together to explain their methods and approaches used to produce a variety of glassware.Laboratory Scientific Glassblowing is a unique project which updates and develops the traditional art of glassblowing and brings it into the 21st century. New skills and materials are introduced, including descriptions of working with fused silica, on laser profile cutting and on the creation of artistic glassware in a scientific setting. Written specifically as a hands-on reference work, this book can be used as a step-by-step practical guide for practitioners and scientists as well as students and apprentices interested in the field.Contributions from: Michael Baumbach, MD of H Baumbach & Co; Paul Rathmill, Enterprise Q; William Fludgate, MD BioChem Glass (app) Ltd; Ian Pearson (Past Chairman BSSG), Editor, BSSG Journal; Gary Coyne, California State University USA; Konstantin Kraft-Poggensee, Former chairman, German Scientific Glassblowing Society; Keith Holden President of the Australian and New Zealand Glassblowing Society; Phil Murray, Churchill Fellow.
Related Title: Laboratory Scientific Glassblowing: Advanced Techniques and Glassblowing's Place in History'If you are interested in learning about glassblowing techniques for scientific glassware, then this book is an incredible opportunity to learn from a master glassblower. Much of this information is passed down in person, and to have it available in a book such as this is a very rare opportunity that you should not pass up.'IEEE Electrical Insulation MagazineThis book explains and demonstrates the methods involved in scientific glassblowing. It describes elementary to advanced glass manipulation together with technical information on its safe use and development in the laboratory. Edited by Paul Le Pinnet (MBE), a scientific glassblower with over 50 years' experience in the field, experts in glassblowing are brought together to explain their methods and approaches used to produce a variety of glassware.Laboratory Scientific Glassblowing is a unique project which updates and develops the traditional art of glassblowing and brings it into the 21st century. New skills and materials are introduced, including descriptions of working with fused silica, on laser profile cutting and on the creation of artistic glassware in a scientific setting. Written specifically as a hands-on reference work, this book can be used as a step-by-step practical guide for practitioners and scientists as well as students and apprentices interested in the field.Contributions from: Michael Baumbach, MD of H Baumbach & Co; Paul Rathmill, Enterprise Q; William Fludgate, MD BioChem Glass (app) Ltd; Ian Pearson (Past Chairman BSSG), Editor, BSSG Journal; Gary Coyne, California State University USA; Konstantin Kraft-Poggensee, Former chairman, German Scientific Glassblowing Society; Keith Holden President of the Australian and New Zealand Glassblowing Society; Phil Murray, Churchill Fellow.
Bioceramics: Properties, Characterization, and Applications will be a general introduction to the uses of ceramics and glasses in the human body for the purposes of aiding, healing, correcting deformities, and restoring lost function. With over 30 years experience, the author developed the text as an outgrowth of an undergraduate course for senior students in biomedical engineering and will emphasize the fundamentals and applications in modern implant fabrication, and will also deal with tissue engineering scaffolds made of ceramics. Organized as a textbook for the student needing to acquire the core competencies, it will meet the demands of advanced undergraduate or graduate coursework in bioceramics, biomaterials, biomedical engineering, and biophysics.
This book examines recent developments in inert anodes for aluminum electrolysis. It describes the composition and application of the most promising metal ceramic inert anode materials and nickel-oxide nanotechnology in the aluminum industry. The volume addresses concepts, analysis, properties, conductivity and corrosion, microstructure and microanalysis, and machinability of inert anodes for aluminum electrolysis. The book will be valuable to the aluminum industry, where inert anodes are having a profound impact in creating more energy saving, greener, and more functional aluminum materials in high-strength and high-temperature applications.
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing presents the physical and chemical principles of the sol-gel process. The book emphasizes the science behind sol-gel processing with a chapter devoted to applications. The first chapter introduces basic terminology, provides a brief historical sketch, and identifies some excellent texts for background reading. Chapters 2 and 3 discuss the mechanisms of hydrolysis and condensation for nonsilicate and silicate systems. Chapter 4 deals with stabilization and gelation of sols. Chapter 5 reviews theories of gelation and examines the predicted and observed changes in the properties of a sol in the vicinity of the gel point. Chapter 6 describes the changes in structure and properties that occur during aging of a gel in its pore liquor (or some other liquid). The discussion of drying is divided into two parts, with the theory concentrated in Chapter 7 and the phenomenology in Chapter 8. The structure of dried gels is explored in Chapter 9. Chapter 10 shows the possibility of using the gel as a substrate for chemical reactions or of modifying the bulk composition of the resulting ceramic by performing a surface reaction (such as nitridation) on the gel. Chapter 11 reviews the theory and practice of sintering, describing the mechanisms that govern densification of amorphous and crystalline materials, and showing the advantages of avoiding crystallization before sintering is complete. The properties of gel-derived and conventional ceramics are discussed in Chapter 12. The preparation of films is such an important aspect of sol-gel technology that the fundamentals of film formation are treated at length in Chapter 13. Films and other applications are briefly reviewed in Chapter 14. Materials scientists and researchers in the field of sol-gel processing will find the book invaluable. |
You may like...
Where Did We Go Wrong? - Industrial…
Gordon Roderick, Michael Stephens
Paperback
R1,040
Discovery Miles 10 400
|