Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This book gives an introduction to the mechanical behavior and degradation of dental ceramics and guides the reader through their performance under effect of oral environments. It addresses the different kinds of dental ceramics, their properties, degradation and mechanical aspects with less emphasys on the physics and chemistry involved, which makes the reading interesting for beginners in the field. In each chapter, the reader will learn about the mechanical behavior of dental ceramics and each phenomenon involved in their application, besides finding some practical examples of their use in dental clinics, their manufacturing procedures and types of degradation. The clear language and the application-oriented perspective of the book makes it suitable for both professionals and students who want to learn about dental ceramics.
This book focuses on the processing, materials design, characterisation, and properties of polymer composites and nanocomposites for use as electromagnetic radiation shielding materials and to enhance radiation shielding capacity in order to meet the safety requirements for use in medical X-ray imaging facilities. It presents an in-depth analysis of materials synthesis methods such as melt-mixing, ion-implantation, solution casting and electrospinning. In addition, it measures the X-ray attenuation behaviour of fabricated composites and nanocomposites in four major types of X-ray equipment, namely general radiography, mammography, X-ray absorption spectroscopy and X-ray fluorescence spectroscopy units. Given its scope, the book will benefit researchers, engineers, scientists and practitioners in the fields of medical imaging, diagnostic radiology and radiation therapy.
3. 1 Techniques of Comminution 35 3. 2 Solid-Solid Reactions 42 3. 2. 1 Mixing and Calcination 42 3. 2. 2 Modem Techniques 45 3. 3 Solution Techniques 46 3. 3. 1 Precipitation and Co-precipitation 46 Forced Hydrolysis 3. 3. 2 49 3. 3. 3 Hydrotbennal Synthesis 51 The Sol-Gel Process 3. 3. 4 53 3. 3. 5 Hydrolysis of Metal-Organics 56 The Emulsion Process 3. 3. 6 56 Solvent Vaporization 3. 4 59 3. 4. 1 Simple Evaporation 59 3. 4. 2 Spray Drying 60 3. 4. 3 Spray Pyrolysis 64 3. 4. 4 Freeze Drying 66 3. 5 Vapour-Phase Techniques 68 3. 5. 1 Vaporization-Condensation 68 3. 5. 2 Vapour-Vapour Reaction 68 3. 5. 3 Vapour-Liquid Reaction 70 3. 5. 4 Vapour-Solid Reaction 71 3. 6 Precursor Decomposition 72 3. 6. 1 Salt Decomposition 72 3. 6. 2 Polymer Pyrolysis 73 4. Synthetic Powders : Options in Preparation 75 4. 0 Introduction 75 4. 1 Single and Multiple Oxide Powders 75 4. 1. 1 Aluminium Oxide 75 4. 1. 2 Zirconium Oxide 85 4. 1. 3 Titanium Oxide 96 4. 1. 4 Magnesium Oxide 99 4. 1. 5 Silicon Dioxide 101 4. 1. 6 Rare Earth Oxides 105 Yttrium Oxide 105 Cerium Oxide 106 4. 1. 7 Zinc Oxide 107 [vi] 4. 1. 8 Mullite 110 4. 1. 9 Magnesium Aluminate Spinel 114 4. 1.
This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering.
The book focuses especially on the application of SHM technology to thin walled structural systems made from carbon fiber reinforced plastics. Here, guided elastic waves (Lamb-waves) show an excellent sensitivity to structural damages so that they are in the center of this book. It is divided into 4 sections dealing with analytical, numerical and experimental fundamentals, and subsequently with Lamb-wave propagation in fiber reinforced composites, SHM-systems and signal processing. The book is designed for engineering students as well as for researchers in the field of structural health monitoring and for users of this technology.
This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.
The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.
This book is devoted to a nontraditional class of materials which are manufactured by the melt-blowing process - i.e. by extrusion of polymer melt followed by fiber stretching with a gas stream. For the first time extensive data on classical and modern modifications of this technology are generalized and a review is given of extrusion head dies and subsidiary equipment. The text examines the structure and main properties of melt-blown materials as conditioned by peculiarities of overheated polymer melt spraying in an oxidizing medium. Information is given about filtering mechanisms and the main types of polymer fibrous filtering materials: electret, magnetic, adsorptional, bactericidic, and about carriers of microorganisms in biofilters. Social and ecological aspects of the application of melt-blown materials are analyzed.
This book is focused on composites involving powders as the starting materials. It provides relevant information for questions related to the selection of constituent phases, most economic fabrication routes, proper testing procedures, and product optimization. The field is sufficiently advanced that predictive models guide many decisions. Applications are illustrated over a broad range of material and property combinations. This title includes: *Selection of phases with consideration of intersolubility & interface *Microstructure, especially the role of phase connectivity *Fabrication approaches, especially net-shape consolidation *Assessment of typical properties, testing techniques & industry standards *Design & trade-off decisions involved in optimization, including cost *Applications, both those that have matured and some emerging prospects. The reader may have little appreciation for how particulate composites are literally everywhere. Examples include new wear resistant consumer products(Apple watch), longer lasting automotive tires with reduced rolling resistance(Yokohama tires), and new diamond heat sinks for computers(Element Six substrates). Particulate composites also form critical components in applications such as magnets, dental fillings, brakes, darts, bio-implants, & cutting tools. Particulate composites are a multi-billion dollar industry, and can be a cost-effective solution ripe for innovation and continued rapid growth. For the engineer, the wide range of particulate composite formulation and property combinations offers the ability to design for a variety of application and provides ample opportunity for innovation. Particulate Composites: Fundamentals & Applications is ideal for use in a one-semester eng. course at the senior UG/graduate level, and is also suitable as a practical reference for materials scientists in academia and industry.
This book describes current advances in the research on membranes and applications in industry, groundwater, and desalination processes. Topics range from synthesis of new polymers to preparation of membranes using new water treatments for effluents, graphite membranes, development of polymeric and ceramic materials for production of membranes intended to separate gases and liquids, and liquid-liquid phases. The authors include materials used to produce catalytic membranes for polymer synthesis. The book also details theoretical approaches and simulation of membrane processes and parameters and design.
This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
Nanocrystalline materials is the name given to three-dimensional ultrafine, polycrystalline microstructures. These microstructures give rise to chemical and physical size effects which are of increasing scientific and technological interest. This book describes the development of a chemical vapor synthesis method for the production of nanocrystalline ceramic powders. The development of the microstructure during sintering is studied and the influence of the synthesis parameters on the structure and properties of the nanocrystalline ceramics from the atomic to the microstructural level is investigated. The emerging unified view, from powder synthesis and ceramic processing to structural characterization and determination of properties, provides a detailed understanding of nanocrystalline materials and enables a precise control of the quality of the final products.
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
Ceramic Microstructures considers the many types of microstructure observed in engineering ceramics, refractories and ceramic matrix composites. All the stages of microstructural evolution are covered, from producing and characterizing starting powders to calcining, milling, shape forming, sintering and heat treating. However, this book is not just about microstructures and how they affect properties: it is also about how to process ceramics to achieve the properties desired.
Composite insulators have been in service in electric power networks successfully for more than 40 years, and now up to the highest operating voltages. The present book extensively covers such insulators with a special focus on today's prevalent material, which is silicone rubber. It includes a detailed description of the electrical and mechanical characteristics of composite insulators, their material properties, their design as well as typical applications and service experience. Particular attention is given to the mechanical behavior of long rod and post insulators, insulated cross-arms, interphase spacers and hollow core apparatus insulators. The state of the art on manufacturing procedures and the selection and dimensioning of the necessary power arc and corona fittings is presented as well as evaluation tests of "old" insulators, i.e. insulators after many years in service. The closing chapter deals with an up to date overview of test procedures and IEC standards. The selection and the contents of the various subjects covered in this book are based on the authors' more than thirty years of experience with a renowned European manufacturer of composite insulators and string hardware. Their long and active participation in the relevant CIGRE and IEC working bodies adding to this experience. This book is therefore addressed to practicing engineers from electric utilities and the industry, as well as to academic professionals.
This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The "Handbook of Zeolite Science and Technology" offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental concepts with the most sophisticated data for each scientific subtopic and budding technology. Supplying over 750 figures, and 350 display equations, this impressive achievement in zeolite science observes synthesis through the lens of MFI (ZSM-5 and silicalite). Chapters progress from conceptual building blocks to complex research presentations.
Corrosion behaviour is one of the most poorly understood characteristics of ceramics. A balanced mixture of scientists from material science, metallurgy, physics, chemistry and mineralogy sum up the state of the art of measurement and modelling and reveal future research directions. The book reviews the theory of corrosion of ceramics, including the diffusion of gases and the predictions of thermodynamics; it discusses critically the kinetic models and representation tools for layer growths and material destruction. Corrosion of nitrides, carbides and oxides by simple and complex gases (O2, H2O, SO2, halides) and melts (ionic and metallic) reveal current measurement and modelling methods, advanced experimental techniques, such as laser diagnostics, TV holography, Raman spectroscopy and NDE surface methods. Frontier areas (e.g. the modelling of porous materials corrosion and protection) are revealed. For scientists and engineers in materials science, dealing with ceramics and their application. A valuable source for research students, solid state physicists and physical chemists.
The last 30 years have seen a steady development in the range of ceramic materials with potential for high temperature engineering applications: in the 60s, self-bonded silicon carbide and reaction-bonded silicon nitride; in the 70s, improved aluminas, sintered silicon carbide and silicon nitrides (including sialons); in the 80s, various toughened Zr0 materials, ceramic matrix composites reinforced with silicon 2 carbide continuous fibres or whiskers. Design methodologies were evolved in the 70s, incorporating the principles of fracture mechanics and the statistical variation and time dependence of strength. These have been used successfully to predict the engineering behaviour of ceramics in the lower range of temperature. In spite of the above, and the underlying thermodynamic arguments for operations at higher temperatures, there has been a disappointing uptake of these materials in industry for high temperature usc. Most of the successful applications are for low to moderate temperatures such as seals and bearings, and metal cutting and shaping. The reasons have been very well documented and include: * Poor predictability and reliability at high temperature. * High costs relative to competing materials. * Variable reproducibility of manufacturing processes. * Lack of sufficiently sensitive non-destructive techniques. With this as background, a Europhysics Industrial Workshop sponsored by the European Physical Society (EPS) was organised by the Netherlands Energy Research Foundation (ECN) and the Institute for Advanced Materials of the Joint Research Centre (JRC) of the EC, at Petten, North Holland, in April 1990 to consider the status of thermomechanical applications of engineering ceramics.
Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: * Modelling water diffusion * Damage induced by water * Accelerated testing * Including durability in design * In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to take account of them. Ensuring long term durability is not only necessary for safety reasons, but will also determine the economic viability of future marine structures.
This excellent, in-depth review of diamond films and coatings covers their properties, growth, deposition, characterization, and applications. The eight chapters are written by experts in their field. Early studies on synthetic diamonds were done in the 1950s and 1960s, however, their use and importance were not recognized until the late 1970s and early 1980s. These coatings are now being used in high temperature and tribological applications, optics and electro-optics applications, and certainly biological applications.
This book covers preparation methods, characterization, and applications of most glass families. It reports the fundamentals of glass, challenges in the development, traditional and new manufacturing processes, characterization techniques, structural, thermal, and optical properties. The book reviews redox reactions in glasses and the factors affecting them, in addition to the techniques for determining the redox states and speciation of polyvalent ions in glass. A special chapter is dedicate to phosphate glasses, their importance, preparation methods, structure and properties. The use of different types of phosphate glasses in biomedicine, optics, electrochemistry, and as hosts for nuclear wastes is thoroughly discussed. Moreover, the applications of phosphate glasses in electronics and laser technology are also discussed in this book. Recent experimental studies such as the development of a novel bioglass system and the influence of ZnO, TiO2, and Al2O3 incorporation on structural, mechanical strength, degradation, pH variation, and formation of hydroxyapatite (Hap) layer on the glass surface are reported. Promising aluminum-silicate glassy system and its glass-ceramic counterpart are also presented in this books. An overview of the calorimetry approaches related to rare earth improvements on the thermal stability of glass is provided. The book discusses the advances in the chalcogenide glasses (ChGs) and based devices. It also reports their applications in optical devices, semiconductor circuits, and other applications. In addition, lanthanide and/or QDs doped luminescent glasses and their use in solid-state lighting and displays, security (anti-counterfeiting), optical temperature sensors, and solar energy (solar spectrum conversion) are reviewed along with a comparison of their advantages and disadvantages. Finally, the nature of phthalocyanines as materials for glass coatings and most widely used synthesis methods of porphyrins and phthalocyanines are discussed. |
You may like...
Graphene and Nanoparticles Hybrid…
Abou El Kacem Qaiss, Rachid Bouhfid, …
Hardcover
R5,876
Discovery Miles 58 760
Environmental Remediation Through Carbon…
Mohammad Jawaid, Akil Ahmad, …
Hardcover
R4,287
Discovery Miles 42 870
Modern Ferrites in Engineering…
Sabrina Arcaro, Janio Venturini
Hardcover
R4,221
Discovery Miles 42 210
Geopolymers and Other Geosynthetics
Mazen Alshaaer, Han-Yong Jeon
Hardcover
Advanced Materials - Proceedings of the…
Ivan A. Parinov, Shun-Hsyung Chang, …
Hardcover
R5,573
Discovery Miles 55 730
Ceramic Materials - Synthesis…
Dolores Eliche Quesada, Luis Perez Villarejo, …
Hardcover
Electroceramics: Materials, Properties…
Quentin Merton
Hardcover
|