![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
The last 30 years have seen a steady development in the range of ceramic materials with potential for high temperature engineering applications: in the 60s, self-bonded silicon carbide and reaction-bonded silicon nitride; in the 70s, improved aluminas, sintered silicon carbide and silicon nitrides (including sialons); in the 80s, various toughened Zr0 materials, ceramic matrix composites reinforced with silicon 2 carbide continuous fibres or whiskers. Design methodologies were evolved in the 70s, incorporating the principles of fracture mechanics and the statistical variation and time dependence of strength. These have been used successfully to predict the engineering behaviour of ceramics in the lower range of temperature. In spite of the above, and the underlying thermodynamic arguments for operations at higher temperatures, there has been a disappointing uptake of these materials in industry for high temperature usc. Most of the successful applications are for low to moderate temperatures such as seals and bearings, and metal cutting and shaping. The reasons have been very well documented and include: * Poor predictability and reliability at high temperature. * High costs relative to competing materials. * Variable reproducibility of manufacturing processes. * Lack of sufficiently sensitive non-destructive techniques. With this as background, a Europhysics Industrial Workshop sponsored by the European Physical Society (EPS) was organised by the Netherlands Energy Research Foundation (ECN) and the Institute for Advanced Materials of the Joint Research Centre (JRC) of the EC, at Petten, North Holland, in April 1990 to consider the status of thermomechanical applications of engineering ceramics.
The "Handbook of Zeolite Science and Technology" offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental concepts with the most sophisticated data for each scientific subtopic and budding technology. Supplying over 750 figures, and 350 display equations, this impressive achievement in zeolite science observes synthesis through the lens of MFI (ZSM-5 and silicalite). Chapters progress from conceptual building blocks to complex research presentations.
This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.
Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: * Modelling water diffusion * Damage induced by water * Accelerated testing * Including durability in design * In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to take account of them. Ensuring long term durability is not only necessary for safety reasons, but will also determine the economic viability of future marine structures.
Intended for forensic scientists and students of the discipline, Forensic Interpretation of Glass Evidence provides the practicing forensic scientist with the necessary statistical tools and methodology to introduce forensic glass evidence into the laboratory. With free software available for downloading at the author's Web site, scientists can apply their own data and draw conclusions using principles practiced in the text.
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
The basic and applied science of electroceramic thin films constitute one of the fast interdisciplinary evolving fields of research worldwide. A major driving force for the extensive research being performed in many Universities and Industrial and National Laboratories is the promise of applications of electroceramic thin ftlms into a whole new generation of advanced microdevices that may revolutionize various technologies and create new multibillion dollar markets. Properties of electroceramic thin films that are being intensively investigated include electrical conductivity, ferroelectricity, piezoelectricity, pyroelectricity, electro-optic activity, and magnetism. Perhaps the most publicized application of electroceramics is that related to the new high temperature superconducting (HTSC) materials, which has been extensively discussed in numerous national and international conferences, including NATO/ASI's and ARW's. Less glamorously publicized applications, but as important as those of HTSC materials, are those involving the other properties mentioned above, which were the subject of this ARW. Investigation on ferroelectric thin films has experienced a tremendous development in recent years due to the advent of sophisticated film synthesis techniques and a substantial improvement in the understanding of the related materials science and implementation of films in various novel devices. A major driving force behind the progress in this interdisciplinary field of research is the promise of the development of a new generation of non-volatile memories with long endurance and fast access time that can overcome the problems encountered in the semiconductor non-volatile memory of ferroelectric materials as high technology.
The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: *Boron-rich solids: science and technology *Synthesis and sintering strategies of boron rich solids *Microcantilever sensors *Screening of the possible boron-based thermoelectric conversion materials; *Ultra-high temperature ZrB2 and HfB2 based composites *Magnetic, transport and high-pressure properties of boron-rich solids *Restrictions of the sensor dimensions for chemical detection *Armor
Ceramic Processing is the first comprehensive, stand alone, multi-authored book on advanced ceramic processing. It provides an overview of the important processing steps involved in the fabrication of advanced ceramics for structural and functional applications.
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.
This book forms the proceedings of the International RILEM Workshop held in Paisley in March 1993. It contains contributions on theoretical and practical aspects of the use of special concretes, with a particular focus on their behaviour in the fresh state. A significant and increasing proportion of concrete mixes differ considerably from ordinary mixes. These are used where high performance is needed or for special applications, such as high strength concrete, underwater concrete, flowing concrete, sprayed concrete. Mixes containing fibres, silica fume, polymers, special aggregates and cements, also demand a different approach to normal practice, such as the use of modified mixing equipment. Outstanding performance of special concretes can be achieved but successful applications depend strongly on the behaviour of the mixes when fresh. At present there is insufficient guidance on the properties, specification, methods of assessment and compliance testing of fresh special concrete. This book brings together expert contributions in this fast developing field and aims to assist civil engineering and concrete technologists concerned with improving the quantity and economy of construct
Modern ceramic materials differ from the traditional materials which were only based on natural substances. It is now possible to prepare ceramics using a wide range of properties and as an area this field has evolved as a very broad scientific and technical field in its own right. In practice one encounters ceramics in practically all branches of materials science and the characteristics are so wide ranging that the common basis of these substances is not always immediately apparent. All ceramic materials are prepared by ceramic technology, and powder substances are used as the initial raw materials. Their physical properties are an expression not only of their composition, but primarily of their structure. Thus in order to fully understand the properties of ceramics, a knowledge of their structure is essential. This book is intended as a source of such knowledge. All the chapters are written by authors with vast experience in the various fields of ceramics who provide a detailed description of the interrelationships between the structure and behaviour of ceramic materials.
This edition has been revised throughout to take account of recent changes and to incorporate amendments required due to the publication of the revised BS 5328. The manual provides information on all aspects of the ready-mixed concrete industry, from basic materials and their properties to the production, quality control and use of ready-mixed concrete. Discussion of the qualities of concrete and the achievement of quality requirements leads to the consideration of specifying concrete quantities. Attention is then turned from production to delivery. The authors discuss arguments for choosing ready-mixed concrete, and deal with the fundamental issues of obtaining quotations, ordering and handling. While providing a detailed ready reference, this book also gives the reader a perspective on the industry as a whole.
The results in this dissertation set the ground to answer a fundamental question in data-driven polymer material science: "Why don't prepared composites show less fatigue than the pure plastics?" A simultaneous analysis of mechanical testing and small angle X-Ray scattering from the DESY source in Hamburg has been applied to approach this question, which is also central to the European research project "Nanotough", and the results are clearly presented in this book. The evolution of the materials structure is visualized and quantitatively analyzed from exhaustive sequences of scattering images. Three different classes of polymer composites are presented as typical and illustrative examples. The obtained results illustrate that the interactions of their components can cause unpredictable structural effects, ultimaltely leading to a weakening of the material, where a reinforcement was expected.
This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.
Prism and Lens Making: A Textbook for Optical Glassworkers, Second
Edition is a unique compendium of the art and science of the
optical working of glass for the production of mirrors, lenses, and
prisms. Incorporating minor corrections and a foreword by Professor
Walter Welford FRS, this reissue of the 1957 edition provides a
wealth of technical information and hands-on guidance gained from a
lifetime of experience. Although some of the techniques have been
replaced by more modern methods, this classic book is still a
valuable source of practical assistance as well as being a pleasure
to read.
Sol--Gel--Optics encompasses numerous schemes for fabricating optical materials from gels -- materials such as bulk optics, optical waveguides, doped oxides for laser and nonlinear optics, gradient refractive index (GRIN) optics, chemical sensors, environmental sensors, and smart' windows. Sol--Gel--Optics: Processing and Applications provides in-depth coverage of the synthesis and fabrication of these materials and discusses the optics related to microporous, amorphous, crystalline and composite materials. The reader will also find in this book detailed descriptions of new developments in silica optics, bulk optics, waveguides and thin films. Various applications to sensor and device technology are highlighted. For researchers and students looking for novel optical materials, processing methods or device ideas, Sol--Gel--Optics: Processing and Applications surveys a wide array of promising new avenues for further investigation and for innovative applications. (This book is the first in a new subseries entitled Electronic Materials: Science and Technology).
This book covers preparation methods, characterization, and applications of most glass families. It reports the fundamentals of glass, challenges in the development, traditional and new manufacturing processes, characterization techniques, structural, thermal, and optical properties. The book reviews redox reactions in glasses and the factors affecting them, in addition to the techniques for determining the redox states and speciation of polyvalent ions in glass. A special chapter is dedicate to phosphate glasses, their importance, preparation methods, structure and properties. The use of different types of phosphate glasses in biomedicine, optics, electrochemistry, and as hosts for nuclear wastes is thoroughly discussed. Moreover, the applications of phosphate glasses in electronics and laser technology are also discussed in this book. Recent experimental studies such as the development of a novel bioglass system and the influence of ZnO, TiO2, and Al2O3 incorporation on structural, mechanical strength, degradation, pH variation, and formation of hydroxyapatite (Hap) layer on the glass surface are reported. Promising aluminum-silicate glassy system and its glass-ceramic counterpart are also presented in this books. An overview of the calorimetry approaches related to rare earth improvements on the thermal stability of glass is provided. The book discusses the advances in the chalcogenide glasses (ChGs) and based devices. It also reports their applications in optical devices, semiconductor circuits, and other applications. In addition, lanthanide and/or QDs doped luminescent glasses and their use in solid-state lighting and displays, security (anti-counterfeiting), optical temperature sensors, and solar energy (solar spectrum conversion) are reviewed along with a comparison of their advantages and disadvantages. Finally, the nature of phthalocyanines as materials for glass coatings and most widely used synthesis methods of porphyrins and phthalocyanines are discussed.
A unique combination of the basic science and fundamental aspects of joints and interfaces with the engineering aspects of the subject. Contributors include researchers drawn from several Eastern European countries. Topics addressed include processing, interfacial reactions, graded joints, residual stress measurement and analysis, and failure and deformation. Audience: Academic and industrial researchers and ceramic manufacturers interested in understanding the current state of the art in joining.
These Proceedings of a NATO-ARW (HTECH ARW 97 1843) held at the Oreanda Hotel, Yalta, Ukraine from April 29 till May 2, 1998 resulted from many discussions between various workers, concerning the need for a gathering of all (if possible) who were concerned with the subject of symmetry of the order parameter and pairing states for superconductivity. We applied ourselves in particular to High critical Temperature Superconductors (HTS), but also studied other unconventional superconductors. The study of HTS is one of the most prominent research subjects in solid state sciences. The understanding of the role of symmetry and pairing conditions are also thought to be necessary before technological applications since these features may be influenced by external fields. The workshop discussions have touched upon theoretical and experimental aspects, but also on related topics. These served as initiators for a very great amount of discussions with many comments from the audience. More than thirty "long lectures" and one on going "poster session" were held. Private discussions went unrecorded but obviously took place at many locations: lecture halls, staircases, cafes, bedrooms, bars, beach, bus, plane... Arguments openly reported for the first time were often quite sharp ones, -and this is an understatement."
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. In recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
This book presents various dynamic processes in non-uniform piezoceramic cylindrical and spherical bodies based on numerical methods. It discusses different variants of nonhomogeneous structural polarized piezoceramic materials in the shape of cylinders and spheres, and highlights the validation of the reliability of the results obtained by numerical calculations. The content is based on an outlined theory and methods of three-dimensional electroelasticity problems. |
You may like...
Keto Diet Cookbook for Women After 50…
Nigella Jennifer Willett
Hardcover
Respecting State Courts - The…
Michael E. Solimine, James L. Walker
Hardcover
R2,043
Discovery Miles 20 430
The Monks of the West - Book 4. St…
Charles Forbes Comte De Montalembert
Paperback
R678
Discovery Miles 6 780
|