Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
Sintering process studies have re-emerged strongly in the past decade due to extensive discussions about the stabilization of nanoparticles and nanostructures, and the development of controlled nanograined bulk materials. This book presents the state-of-art in experiments and theory of novel sintering processes, traditional sintering and grain growth. The scope ranges from powder metallurgy to ceramic and composites processing. The challenges of conventional and novel sintering and grain growth in nanopowders and nanostructures are addressed, being useful for students as well as professionals interested in sintering at the nanoscale.
Significant progress has been made in recent years in developing silicon nitride ceramics. The advances that have been achieved are mainly based on an increasing understanding of processing and microstructure-properties relationships. New analytical methods and high resolution transmission electron microscopy (HRTEM) coupled with extensive phase equilibria studies have provided new insights into the grain boundary region and offer the possibility to tailor the microstructure for specific applications. Because of the anticipated break-through in industrial applications there are still considerablt; research activities at industrial laboratories as well as other research centres. This volume presents the contributions to the international workshop "Tailoring ofHigh- Temperature Properties of Si3N4-Ceramics" with 60 participants from 12 countries held on 6th - 9th October 1993 at SchloB Ringberg in Germany, the conference site of the Max- Planck-Society. Additionally, it contains all invited papers of the International Conference "Silicon Nitride 93" held before the workshop on 4th - 6th October 1993 in Stuttgart/Germany. The book covers all recent research activities on silicon nitride ceramics and gives an overview with respect to recent developments.
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.
All living things contain carbon in some form, as it is the primary component of macromolecules including proteins, lipids, nucleic acids (RNA and DNA), and carbohydrates. As a matter of fact, it is the backbone of all organic (chemistry) compounds forming different kinds of bonds. Carbon: The Black, the Gray and the Transparent is not a complete scientific history of the material, but a book that describes key discoveries about this old faithful element while encouraging broader perspectives and approaches to its research due to its vast applications. All allotropes of carbon are described in this book, along with their properties, uses, and methods of procurement or manufacturing. Black carbon is represented by coal, gray carbon is represented by graphite, and transparent carbon is represented by diamond.
Diamond has a unique combination of properties, such as the highest hardness and thermal conductivity among any known material, high electrical resistivity, a large optical band gap and a high transmission, good resistance to chemical erosion, low adhesion and friction, and extremely low thermal expansion coefficient. As such, diamond has been a desirable material in a wide range of applications in mechanical, chemical, optical, thermal and electrical engineering. In many of the cases, the surface of a diamond component or element must have a superior finish, often down to a surface roughness of nanometers. Nevertheless, due to its extreme hardness and chemical inertness, the polishing of diamond and its composites has been a sophisticated process. "Polishing of Diamond Materials" will provide a state-of-the-art analysis, both theoretically and experimentally, of the most commonly used polishing techniques for mono/poly-crystalline diamond and chemical vapour deposition (CVD) diamond films, including mechanical, chemo-mechanical, thermo-chemical, high energy beam, dynamic friction and other polishing techniques. The in-depth discussions will be on the polishing mechanisms, possible modelling, material removal rate and the quality control of these techniques. A comparison of their advantages and drawbacks will be carried out to provide the reader with a useful guideline for the selection and implementation of these polishing techniques. "Polishing of Diamond Materials" will be of interest to researchers and engineers in hard materials and precision manufacturing, industry diamond suppliers, diamond jewellery suppliers and postgraduate students in the area of precision manufacturing. The Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics "etc." Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used.
Continuing developments in glass science and technology have necessitated the revision of this successful work, which provides up-to-date coverage of the chemistry of glasses. A thorough treatment of the molecular structure and chemistry of the glassy state is presented in order that the relationsip between properties and function in glasses may be appreciated. For the new edition, two new chapters have been added; one dealing with the chemistry of glass batch reactions and the other with the sol-gel method of glass making. A further new section has been included on the strength of glasses. The formation and transformations of glasses are discussed, followed by chapters on physical properties, chemical durability, redox reactions and acid-base concepts. The author then shows how colour originates in glasses and finally considers the polymeric nature of glass-forming melts. This text should be useful as both a text and reference to all those studying glass whether as chemists, materials scientists, or glass scientists and technologists. This book should be of interest to senior undergraduates/graduates and professionals in materials science, glass technology and ceramics.
This thesis offers novel insights into the time-dependent structural evolution of polymers under deformation. In-situ tensile experiments at high-brilliance synchrotron sources allowed to characterize the material with unrivaled resolution in time and space. The strain-induced crystallization in natural rubber was studied by wide-angle X-ray diffraction. Special emphasis was put on the establishment of new structure-property relationships to give a more in-depth understanding of the mechanical performance of rubber parts, e.g. in tear fatigue loading. To this end, the kinetics of strain-induced crystallization were investigated, subjecting the material to high strain rates. The local structure around a crack tip was observed by scanning wide-angle X-ray diffraction. Ultra-small angle X-ray scattering served to study filled elastomers under deformation, from specially prepared model filler systems to industrially relevant carbon black filled rubbers. Other methods include electron microscopy coupled with in-situ tensile testing and optical dilatometry to examine cavitation in rubbers.The underlying theory as well as a literature review are covered by an extensive introductory chapter, followed by a description of the experimental techniques. The results are presented in more detail than in the original journal publications.
This textbook entitled Fundamentals of Perovskite Oxides: Synthesis, Structure, Properties and Applications summarizes the structure, synthesis routes, and potential applications of perovskite oxide materials. Since these perovskite-type ceramic materials offer opportunities in a wide range of fields of science and engineering, the chapters are broadly organized into four sections of perovskite-type oxide materials and technology. Covers recent developments in perovskite oxides Serves as a quick reference of perovskite oxides information Describes novel synthesis routes for nanostructured perovskites Discusses comprehensive details for various crystal structures, synthesis methods, properties, and applications Applies to academic education, scientific research, and industrial R&D for materials research in real-world applications like bioengineering, catalysis, energy conversion, energy storage, environmental engineering, and data storage and sensing This book serves as a handy and practical guideline suitable for students, engineers, and researchers working with advanced ceramic materials.
This book summarizes many of the recent research accomplishments in the area of polyvinylchloride (PVC)-based blends and their preparation, characterization and applications. Various sub-topics are addressed, such as the state-of-the-art of PVC based blends, new challenges and opportunities, emphasis being given to the types and sizes of components/fillers and optimum compositions of PVC blends, their processing and structure-properties relationships, modification/compatibilization methods, and possible applications. PVC/thermoplastic based nano, micro and macro blends, PVC membranes, bio-based plasticizers and PVC blends with components from renewable resources are reported. The various chapters in this book are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe. It covers an up-to-date record on the major findings and observations in the field of PVC-based blends.
This book covers diverse types of ceramic membranes applied in separation processes. The authors present the preparation methods and well as the main application of ceramic membranes. Modules, microfiltration and ultrafiltration are topics described within the text. The final chapter focuses on water and wastewater treatment by membranes separation processes.
This work presents a comprehensive source of information on germanate glasses. It describes in detail the structures, properties, and glass forming abilities of various germanate systems, then shows how to create new and established varieties of glasses with precision and accuracy. "Germanate Glasses" begins with a review of glass state physics and chemistry, then moves into detailed chapters describing germanium dioxide; GeO2 glasses; binary, ternary, and multicomponent glasses; fluoride-containing germanate glasses; and pseudo-ternary fluoro-germanate systems. These chapters present up-to-date research on each glass type, including x-ray and neutron studies, optical properties, spectroscopic data, and more. Numerous references are included at the end of each chapter. For researchers, designers and fabricators of germanate glass, this book: shows how composition and structure relate to glass forming ability, and sets out to cut design time and eliminate unnecessary experiments by knowing ahead of time what will and will not work.
The text explores the development, use, and effect of additive manufacturing and digital manufacturing technologies for diverse applications. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including industrial, manufacturing, and materials science. This book: Discusses the application of 3D virtual models to lasers, electron beams, and computer-controlled additive manufacturing machines Covers applications of additive manufacturing in diverse areas including healthcare, electronics engineering, and production engineering Explains the use of additive manufacturing for biocomposites and functionally graded materials Highlights rapid manufacturing of metallic components using 3D printing Illustrates production and optimization of dental crowns using additive manufacturing This book covers recent developments in manufacturing technology, such as additive manufacturing, 3D printing, rapid prototyping, production process operations, and manufacturing sustainability. The text further emphasizes the use of additive manufacturing for biocomposites and functionally graded materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, automotive engineering, aerospace engineering, and materials science.
This book provides a simple and unified approach to the mechanics of discontinuous-fibre reinforced composites, and introduces readers as generally as possible to the key concepts regarding the mechanics of elastic stress transfer, intermediate modes of stress transfer, plastic stress transfer, fibre pull-out, fibre fragmentation and matrix rupture. These concepts are subsequently applied to progressive stages of the loading process, through to the composite fractures. The book offers a valuable guide for advanced undergraduate and graduate students attending lecture courses on fibre composites. It is also intended for beginning researchers who wish to develop deeper insights into how discontinuous fibre provides reinforcement to composites, and for engineers, particularly those who wish to apply the concepts presented here to design and develop discontinuous-fibre reinforced composites.
This open access proceedings of the 14th International Council for Applied Mineralogy Congress (ICAM) in Belgorod, Russia cover a wide range of topics including applied mineralogy, advanced and construction materials, ore and industrial minerals, mineral exploration, cultural heritage, etc. It includes contributions to geometallurgy, industrial minerals, oil and gas reservoirs as well as stone artifacts and their preservation. The International Congress on Applied Mineralogy strengthens the relation between the research on applied mineralogy and the industry.
Boron nitride was first produced in the 18th century and, by virtue of its extraordinary mechanical strength, has found extensive application in industrial processes since the 1940s. However, the more recent discovery that boron nitride allotropes are as structurally diverse as those of carbon (e.g. fullerenes, graphene, carbon nanotubes) has placed this material, and particularly its low-dimensional allotropes, back at the forefront of modern material science. This book provides a comprehensive history of this rapid rise in the status of boron nitride and boron nitride nanomaterials, spanning the earliest examples of three-dimensional boron nitride allotropes, through to contemporary structures such as monolayer hexagonal boron nitride, boron nitride nanomeshes, boron nitride nanotubes and the incorporation of boron nitride into cutting-edge van der Waals heterostructures. It specifically focuses on the properties, applications and synthesis techniques for each of these allotropes and examines how the evolution in boron nitride production methods is linked to that in our understanding of how low-dimensional nanomaterials self-assemble, or 'grow', during synthesis. The book demonstrates the key synergy between growth mechanisms and the development of new, advanced nanostructured materials.
This book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars.
The first book completely devoted to the subject, this volume describes the analysis of the composition and structure of glass and glass ceramics. Although conceived as a monograph, the individual chapters are written by leading Schott experts on the corresponding subjects.
This book explains theoretical and technological aspects of amorphous drug formulations. It is intended for all those wishing to increase their knowledge in the field of amorphous pharmaceuticals. Conversion of crystalline material into the amorphous state, as described in this book, is a way to overcome limited water solubility of drug formulations, in this way enhancing the chemical activity and bioavailability inside the body. Written by experts from various fields and backgrounds, the book introduces to fundamental physical aspects (explaining differences between the ordered and the disordered solid states, the enhancement of solubility resulting from drugs amorphization, physical instability and how it can be overcome) as well as preparation and formulation procedures to produce and stabilize amorphous pharmaceuticals. Readers will thus gain a well-funded understanding and find a multi-faceted discussion of the properties and advantages of amorphous drugs and of the challenges in producing and stabilizing them. The book is an ideal source of information for researchers and students as well as professionals engaged in research and development of amorphous pharmaceutical products.
This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches described here will prove invaluable in meeting that challenge.
This book focuses on the matrix cracking behavior in ceramic-matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs. |
You may like...
Environmental Remediation Through Carbon…
Mohammad Jawaid, Akil Ahmad, …
Hardcover
R4,287
Discovery Miles 42 870
Geopolymers and Other Geosynthetics
Mazen Alshaaer, Han-Yong Jeon
Hardcover
Biocomposite Materials - Design and…
Mohamed Thariq Hameed Sultan, Mohd Shukry Abdul Majid, …
Hardcover
R2,994
Discovery Miles 29 940
Reinforcement of Rubber - Visualization…
Shinzo Kohjiya, Atsushi Kato, …
Hardcover
R2,792
Discovery Miles 27 920
Smart and Advanced Ceramic Materials and…
Mohsen Mhadhbi
Hardcover
NAC 2019 - Proceedings of the 2nd…
Ri-Ichi Murakami, Pankaj M. Koinkar, …
Hardcover
R2,789
Discovery Miles 27 890
|