![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Ceramics & glass technology
This thesis offers novel insights into the time-dependent structural evolution of polymers under deformation. In-situ tensile experiments at high-brilliance synchrotron sources allowed to characterize the material with unrivaled resolution in time and space. The strain-induced crystallization in natural rubber was studied by wide-angle X-ray diffraction. Special emphasis was put on the establishment of new structure-property relationships to give a more in-depth understanding of the mechanical performance of rubber parts, e.g. in tear fatigue loading. To this end, the kinetics of strain-induced crystallization were investigated, subjecting the material to high strain rates. The local structure around a crack tip was observed by scanning wide-angle X-ray diffraction. Ultra-small angle X-ray scattering served to study filled elastomers under deformation, from specially prepared model filler systems to industrially relevant carbon black filled rubbers. Other methods include electron microscopy coupled with in-situ tensile testing and optical dilatometry to examine cavitation in rubbers.The underlying theory as well as a literature review are covered by an extensive introductory chapter, followed by a description of the experimental techniques. The results are presented in more detail than in the original journal publications.
Exploring advanced ceramic coatings and ultra-high temperature ceramic materials, this issue brings readers up-to-date with important new and emerging findings, materials, and applications. The nineteen papers in this issue originate from two symposia and one focused session held in January 2012, during the 36th International Conference on Advanced Ceramics and Composites (ICACC). With contributions from leading ceramics and materials researchers from around the world, this issue explores the latest advances and key challenges in advanced thermal and environmental coating processing and characterizations, advanced wear corrosion-resistant, nanocomposite, and multi-functional coatings, thermal protection systems, and more.
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.
This book covers diverse types of ceramic membranes applied in separation processes. The authors present the preparation methods and well as the main application of ceramic membranes. Modules, microfiltration and ultrafiltration are topics described within the text. The final chapter focuses on water and wastewater treatment by membranes separation processes.
This book summarizes many of the recent research accomplishments in the area of polyvinylchloride (PVC)-based blends and their preparation, characterization and applications. Various sub-topics are addressed, such as the state-of-the-art of PVC based blends, new challenges and opportunities, emphasis being given to the types and sizes of components/fillers and optimum compositions of PVC blends, their processing and structure-properties relationships, modification/compatibilization methods, and possible applications. PVC/thermoplastic based nano, micro and macro blends, PVC membranes, bio-based plasticizers and PVC blends with components from renewable resources are reported. The various chapters in this book are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe. It covers an up-to-date record on the major findings and observations in the field of PVC-based blends.
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques provides a detailed overview of the latest developments in the mechanics of modern metal forming manufacturing. Focused on mechanics as opposed to process, it looks at the mechanical behavior of materials exposed to loading and environmental conditions related to modern manufacturing processes, covering deformation as well as damage and fracture processes. The book progresses from forming to machining and surface-treatment processes, and concludes with a series of chapters looking at recent and emerging technologies. Other topics covered include simulations in autofrettage processes, modeling strategies related to cutting simulations, residual stress caused by high thermomechanical gradients and pultrusion, as well as the mechanics of the curing process, forging, and cold spraying, among others. Some non-metallic materials, such as ceramics and composites, are covered as well.
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
This book provides a simple and unified approach to the mechanics of discontinuous-fibre reinforced composites, and introduces readers as generally as possible to the key concepts regarding the mechanics of elastic stress transfer, intermediate modes of stress transfer, plastic stress transfer, fibre pull-out, fibre fragmentation and matrix rupture. These concepts are subsequently applied to progressive stages of the loading process, through to the composite fractures. The book offers a valuable guide for advanced undergraduate and graduate students attending lecture courses on fibre composites. It is also intended for beginning researchers who wish to develop deeper insights into how discontinuous fibre provides reinforcement to composites, and for engineers, particularly those who wish to apply the concepts presented here to design and develop discontinuous-fibre reinforced composites.
Durability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization. This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites.
This open access proceedings of the 14th International Council for Applied Mineralogy Congress (ICAM) in Belgorod, Russia cover a wide range of topics including applied mineralogy, advanced and construction materials, ore and industrial minerals, mineral exploration, cultural heritage, etc. It includes contributions to geometallurgy, industrial minerals, oil and gas reservoirs as well as stone artifacts and their preservation. The International Congress on Applied Mineralogy strengthens the relation between the research on applied mineralogy and the industry.
Advanced Ceramic Coatings for Biomedical Applications covers tissue engineering, scaffolds, implant and dental application, wound healing and adhesives. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; energy applications; and emerging applications. This books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers.
Worldwide research on ancient glass began in the early 20th century. A consensus has been reached in the community of Archaeology that the first manmade or synthetic glasses, based on archaeological findings, originated in the Middle East during the 5000-3000's BC. By contrast, the manufacturing technology of pottery and ceramics were well developed in ancient China. The earliest pottery and ceramics dates back to the Shang Dynasty - the Zhou Dynasty (1700 BC-770 BC), while the earliest ancient glass artifacts unearthed in China dates back to the Western Han Dynasty. Utilizing the state-of-the art analytical and spectroscopic methods, the recent findings demonstrate that China had already developed its own glassmaking technology at latest since 200 BC. There are two schools of viewpoint on the origin of ancient Chinese glass. The more common one believes that ancient Chinese glass originated from the import of glassmaking technology from the West as a result of Sino-West trade exchanges in the Western Han Dynasty (206 BC-25 AD). The other scientifically demonstrates that homemade ancient Chinese glass with unique domestic formula containing both PbO and BaO were made as early as in the Pre-Qin Period or even the Warring State Period (770 BC-221 BC), known as Youhsa or Faience. This English version of the previously published Chinese book entitled History of Ancient Chinese Glass Technology Development is for universities and research institutes where various research and educational activities of ancient glass and history are conducted. With 18 chapters, the scope of this book covers very detailed information on scientifically based findings of ancient Chinese glass development and imports and influence of foreign glass products as well as influence of the foreign glass manufacturing processes through the trade exchanges along the Silk Road(s).
The first book completely devoted to the subject, this volume describes the analysis of the composition and structure of glass and glass ceramics. Although conceived as a monograph, the individual chapters are written by leading Schott experts on the corresponding subjects.
Boron nitride was first produced in the 18th century and, by virtue of its extraordinary mechanical strength, has found extensive application in industrial processes since the 1940s. However, the more recent discovery that boron nitride allotropes are as structurally diverse as those of carbon (e.g. fullerenes, graphene, carbon nanotubes) has placed this material, and particularly its low-dimensional allotropes, back at the forefront of modern material science. This book provides a comprehensive history of this rapid rise in the status of boron nitride and boron nitride nanomaterials, spanning the earliest examples of three-dimensional boron nitride allotropes, through to contemporary structures such as monolayer hexagonal boron nitride, boron nitride nanomeshes, boron nitride nanotubes and the incorporation of boron nitride into cutting-edge van der Waals heterostructures. It specifically focuses on the properties, applications and synthesis techniques for each of these allotropes and examines how the evolution in boron nitride production methods is linked to that in our understanding of how low-dimensional nanomaterials self-assemble, or 'grow', during synthesis. The book demonstrates the key synergy between growth mechanisms and the development of new, advanced nanostructured materials.
This book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars.
This book explains theoretical and technological aspects of amorphous drug formulations. It is intended for all those wishing to increase their knowledge in the field of amorphous pharmaceuticals. Conversion of crystalline material into the amorphous state, as described in this book, is a way to overcome limited water solubility of drug formulations, in this way enhancing the chemical activity and bioavailability inside the body. Written by experts from various fields and backgrounds, the book introduces to fundamental physical aspects (explaining differences between the ordered and the disordered solid states, the enhancement of solubility resulting from drugs amorphization, physical instability and how it can be overcome) as well as preparation and formulation procedures to produce and stabilize amorphous pharmaceuticals. Readers will thus gain a well-funded understanding and find a multi-faceted discussion of the properties and advantages of amorphous drugs and of the challenges in producing and stabilizing them. The book is an ideal source of information for researchers and students as well as professionals engaged in research and development of amorphous pharmaceutical products.
More than 100 important innovations in ceramics in the last 100 years are individually described. These include such major advances as the float glass process, continuous glass fibers and glass wool, the zirconia oxygen sensor, honeycomb ceramics, tape casting and multilayer ceramics, advances in tunnel kilns, low loss optical fiber, dental ceramics, basic oxygen steelmaking refractories, and uranium dioxide as a nuclear fuel. In addition, a summary of progress in ceramics is given that relates ceramic advances to general trends in the progress of science and industrial development.
The text explores the development, use, and effect of additive manufacturing and digital manufacturing technologies for diverse applications. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including industrial, manufacturing, and materials science. This book: Discusses the application of 3D virtual models to lasers, electron beams, and computer-controlled additive manufacturing machines Covers applications of additive manufacturing in diverse areas including healthcare, electronics engineering, and production engineering Explains the use of additive manufacturing for biocomposites and functionally graded materials Highlights rapid manufacturing of metallic components using 3D printing Illustrates production and optimization of dental crowns using additive manufacturing This book covers recent developments in manufacturing technology, such as additive manufacturing, 3D printing, rapid prototyping, production process operations, and manufacturing sustainability. The text further emphasizes the use of additive manufacturing for biocomposites and functionally graded materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, automotive engineering, aerospace engineering, and materials science.
This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches described here will prove invaluable in meeting that challenge.
This book provides a comprehensive overview of the steps involved in the ceramic injection molding process. It provides the reader with a convenient and authoritative source of information and guidance on the use of materials, equipment and testing procedures to produce satisfactory ceramic products.
This volume gives background knowledge about the difficult matter of electrochemical behaviour of glass melts and solid glasses, laying the foundations for- a sound understanding of physicochemical redox and ion transfer processes in solid or liquid glasses and the interpretation of experimental results;- control of production processes, including fining, interface reactions and thermodynamic equilibria of glass melts with refractories and the surrounding atmosphere;- the field-driven ion exchange between solutions and glasses or within electrochromic thin-film systems; - fundamentals and application of glass electrodes for PH measurements, as well as information about the presently ongoing redefinition by a IUPAC committee;- mechanisms responsible for glass corrosion;- the concept of optical basicity. |
![]() ![]() You may like...
Tissue Engineering of the Peripheral…
Stefano Geuna, Isabelle Perroteau, …
Hardcover
|