![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry
This textbook takes the reader on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, as well as the most modern and exciting of all: elementary particles and the physics of fractals. The second edition has been supplemented with a new chapter devoted to concise though complete presentation of dynamical systems, bifurcations and chaos theory. The treatment is confined to the essentials of each area, presenting all the central concepts and equations at an accessible level. Chapters 1 to 4 contain the standard material of courses in theoretical physics and are supposed to accompany lectures at the university; thus they are rather condensed. They are supposed to fill one year of teaching. Chapters 5 and 6, in contrast, are written less condensed since this material may not be part of standard lectures and thus could be studied without the help of a university teacher. An appendix on elementary particles lies somewhere in between: It could be a summary of a much more detailed course, or studied without such a course. Illustrations and numerous problems round off this unusual textbook. It will ideally accompany the students all along their course in theoretical physics and prove indispensable in preparing and revising the exams. It is also suited as a reference for teachers or scientists from other disciplines who are interested in the topic.
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica (R)), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica (R) codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica (R) or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.
This book describes the development of a new low-cost medium wavelength IR (MWIR) monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapor phase deposition (VPD) PbSe-based MWIR detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. In order to fulfill the operational requirements of VPD PbSe, this work proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This thesis addresses elementary dislocation processes occurring in single-crystalline alloys based on Fe-Al, and investigates correspondences between dislocation distribution inside crystals characterized by transmission electron microscopy (TEM) and surface patterns observed using atomic force microscopy (AFM). Fe-Al alloys with different degrees of ordering were prepared and deformed in compression at ambient temperature in-situ inside the AFM device. The evolution of slip line structures was captured in the sequences of AFM images and wavy slip bands, while cross slip at the tip of the slip band and homogeneous fine slip lines were also identified. Further, the thesis develops a technique for constructing 3D representations of dislocations observed by TEM without the prohibitive difficulties of tomography, and creates 3D models of dislocation structures. Generally speaking, the thesis finds good agreement between AFM and TEM observations, confirming the value of AFM as a relevant tool for studying dislocations.
Using a novel approach that combines high temporal resolution of the laser T-jump technique with unique sets of fluorescent probes, this study unveils previously unresolved DNA dynamics during search and recognition by an architectural DNA bending protein and two DNA damage recognition proteins. Many cellular processes involve special proteins that bind to specific DNA sites with high affinity. How these proteins recognize their sites while rapidly searching amidst ~3 billion nonspecific sites in genomic DNA remains an outstanding puzzle. Structural studies show that proteins severely deform DNA at specific sites and indicate that DNA deformability is a key factor in site-specific recognition. However, the dynamics of DNA deformations have been difficult to capture, thus obscuring our understanding of recognition mechanisms. The experiments presented in this thesis uncover, for the first time, rapid (~100-500 microseconds) DNA unwinding/bending attributed to nonspecific interrogation, prior to slower (~5-50 milliseconds) DNA kinking/bending/nucleotide-flipping during recognition. These results help illuminate how a searching protein interrogates DNA deformability and eventually "stumbles" upon its target site. Submillisecond interrogation may promote preferential stalling of the rapidly scanning protein at cognate sites, thus enabling site-recognition. Such multi-step search-interrogation-recognition processes through dynamic conformational changes may well be common to the recognition mechanisms for diverse DNA-binding proteins.
The 3rd International Multidisciplinary Microscopy Congress (InterM2015), held from 19 to 23 October 2015, focused on the latest developments concerning applications of microscopy in the biological, physical and chemical sciences at all dimensional scales, advances in instrumentation, techniques in and educational materials on microscopy. These proceedings gather 17 peer-reviewed technical papers submitted by leading academic and research institutions from nine countries and representing some of the most cutting-edge research available.
This book covers the latest developments in capillary electrophoresis-mass spectrometry for the analysis of therapeutic proteins. The application of capillary electrophoresis-mass spectrometry (CE-MS) coupling technology in the analysis of recombinant therapeutic proteins is detailed thoroughly. Specific topics include recent developments in coupling capillary electrophoresis with mass spectrometry for the quality control of monoclonal antibody therapeutics, top-down analysis of monoclonal antibody using the CE-MS platform, and detection of host cell protein impurities. Comprehensive characterization of antibody-drug conjugates (ADCs) by coupling capillary electrophoresis with mass spectrometry is also covered. This is an ideal book for scientists in the life science and biopharmaceutical industry who are working on characterizing the PTMs of monoclonal antibodies, as well as graduate students and researchers in the separation science and biological mass spectrometry fields.
This book highlights key technologies and identifies areas for further development in proteogenomics. The utility and usefulness of very large Omics data sets (Next Gen Sequencing of DNA, RNA-seq, ribosome profiling, mass spectrometry- and antibody-based proteomics) is discussed and opportunities and challenges of related bioinformatics applications are outlined. The reader will be able to appreciate the interdisciplinary nature of the continuously evolving area of proteogenomics, which has already grown beyond its original concept of verifying gene annotations by proteomics. The chapters presented in this book are arranged to offer a general overview, rather than to provide detailed descriptions of technologies. The selected applications will provide useful insight into the level of detail that can be obtained in relation to certain diseases areas, including cancer biology and personalized medicine. The readers will find that each chapter delivers a comprehensive approach to proteogenomics, each from the point of view of a specific application. Research scientists interested in innovative processes that can offer a unique and at the same time a more complete access to technological developments and concepts that in turn can contribute to a better understand biological functions should read this book.
This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range surface exciton polaritons. Detailed attention is also paid to fiber Bragg grating sensors and multimode interference sensors. Each chapter is written by an acknowledged expert in the subject under discussion.
This book emphasizes the use of four complex plane formalisms (impedance, admittance, complex capacitance, and modulus) in a simultaneous fashion. The purpose of employing these complex planes for handling semicircular relaxation using a single set of measured impedance data (ac small-signal electrical data) is highly underscored. The current literature demonstrates the importance of template version of impedance plot whereas this book reflects the advantage of using concurrent four complex plane plots for the same data. This approach allows extraction of a meaningful equivalent circuit model attributing to possible interpretations via potential polarizations and operative mechanisms for the investigated material system. Thus, this book supersedes the limitations of the impedance plot, and intends to serve a broader community of scientific and technical professionals better for their solid and liquid systems. This book addresses the following highlighted contents for the measured data but not limited to the: - (1) Lumped Parameter/Complex Plane Analysis (LP/CPA) in conjunction with the Bode plots; (2) Equivalent circuit model (ECM) derived from the LP/CPA; (3) Underlying Operative Mechanisms along with the possible interpretations; (4) Ideal (Debye) and non-ideal (non-Debye) relaxations; and (5) Data-Handling Criteria (DHC) using Complex Nonlinear Least Squares (CNLS) fitting procedures.
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
This thesis sheds new light on the fascinating properties of composite quantum systems. Quantum systems of different sizes, ranging from small bipartite systems to large many-body ensembles, can be studied with the help of modern quantum optical experiments. These experiments make it possible to observe a broad variety of striking features, including nonclassical correlations, complex dynamics and quantum phase transitions. By adopting the complementary perspectives of quantum information theory, quantum chemistry and many-body theory, the thesis develops new methods for the efficient characterization and description of interacting, composite quantum systems.
This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.
This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber's photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simulations.
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
This book covers the main ideas, methods, recent developments and applications of quantum-limit optical spectroscopy to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to a significant progress in trapping and cooling of single atoms and ions. This progress allows to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with a large precision. Moreover, it allows to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly even imaginable as ``thought experiments'' a few years ago.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research.
This book gathers the proceedings of the plenary sessions, invited lectures, and papers presented at the International Conference on Recent Trends in Materials Science and Applications (ICRTMSA-2016). It also features revealing presentations on various aspects of Materials Science, such as nanomaterials, photonic crystal fibers, quantum dots, thin film techniques, crystal growth, spectroscopic procedures, fabrication and characterisation of new materials / compounds with enhanced features, and potential applications in nonlinear optical and electro-optic devices, solar cell device, chemical sensing, biomedical imaging, diagnosis and treatment of cancer, energy storage device etc. This book will be of great interest to beginning and seasoned researchers alike.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
A text- and exercise book for physical chemistry students! This book deals with the fundamental aspects of physical chemistry taught at the undergraduate level in chemistry and the engineering sciences in a compact and practice-oriented form. Numerous problems and detailed solutions offer the possibility of an in-depth reflection of topics like chemical thermodynamics and kinetics, atomic structure and spectroscopy. Every chapter starts with a recapitulation of important background information, before leading over to representative exercises and problems. Detailed descriptions systematically present and explain the solutions to the problems, so that readers can carefully check their own solutions and get clear-cut introductions on how to approach similar problems systematically. The book addresses students at the (upper) undergraduate level, as well as tutors and teachers. It is a rich source of exercises for exam preparation and can be used alongside classical textbooks. Furthermore it can serve teachers and tutors for the conception of their lessons. Its well-thought-through presentation, structure and design make the book appeal to everybody who wants to succeed with the physical chemistry lessons and exercises.
This thesis presents a method for reliably and robustly producing samples of amyloid- (A ) by capturing them at various stages of aggregation, as well as the results of subsequent imaging with various atomic force microscopy (AFM) methods, all of which add value to the data gathered by collecting information on the peptide's nanomechanical, elastic, thermal or spectroscopical properties. Amyloid- (A ) undergoes a hierarchy of aggregation following a structural transition, making it an ideal subject of study using scanning probe microscopy (SPM), dynamic light scattering (DLS) and other physical techniques. By imaging samples of A with Ultrasonic Force Microscopy, a detailed substructure to the morphology is revealed, which correlates well with the most advanced cryo-EM work. Early stage work in the area of thermal and spectroscopical AFM is also presented, and indicates the promise these techniques may hold for imaging sensitive and complex biological materials. This thesis demonstrates that physical techniques can be highly complementary when studying the aggregation of amyloid peptides, and allow the detection of subtle differences in their aggregation processes. |
![]() ![]() You may like...
The Politics of Technology in Latin…
Avery Plaw, Barbara Carvalho Gurgel, …
Paperback
R1,427
Discovery Miles 14 270
12 Rules For Life - An Antidote To Chaos
Jordan B. Peterson
Paperback
![]()
|