![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
This book discusses the latest investigations into the electronic structure of narrow-gap semiconductors in extreme conditions, and describes in detail magnetic field and pressure measurements using two high-quality single crystals: black phosphorus (BP) and lead telluride (PbTe). The book presents two significant findings for BP and PbTe. The first is the successful demonstration of the pressure-induced transition from semiconductor to semimetal in the electronic structure of BP using magnetoresistance measurements. The second is the quantitative estimation of how well the Dirac fermion description works for electronic properties in PbTe. The overviews on BP and PbTe from the point of view of material properties help readers quickly understand the typical electronic character of narrow-gap semiconductor materials, which has recently attracted interest in topological features in condensed matter physics. Additionally the introductory review of the principles and methodology allows readers to understand the high magnetic field and pressure experiments.
This book is written for chemists, chemical engineers and chemical technologists who are not expert users of Raman spectroscopy technology. The background to the technique is covered along with its analytical applications. A brief introduction to Raman spectroscopy and instrumentation in general is included, along with detailed explanations of the advantages of Raman over other techniques. Emphasis is placed on the way it has been used to solve a range of analytical problems in the chemical and allied industries.
The aim of this title is to document the meeting exploring the key challenges in understanding the biological chemistry of metals. State of the art work using advanced physical and computational methods to probe the electronic structure and the reactivity at the active sites of metalloenzymes is discussed. These investigations are truly interdisciplinary and the development and application of physical methods and computational chemistry to biological problems require spectroscopists and theoretical chemists to collaborate with each other and with a wide range of other scientists, notably biochemists and coordination chemists. This is particularity true as spectroscopy and theory typically prove insight into slightly different aspects of reactivity. The book will provide substantial benefits to both experimentalists and theoreticians working in this filed.
Many books and reviews about scanning probe microscopies (SPM) cover the basics of their performance, novel developments, and state-of-the-art applications. Taking a different approach, Hybridizing Surface Probe Microscopies: Towards a Full Description of the Meso- and Nanoworlds encompasses the technical efforts in combining SPM with spectroscopic and optical complementary techniques that, altogether, provide a complete description of nanoscale and mesoscale systems and processes from corrosion to enzymatic reactions. The book is organized into eight chapters, following a general scheme that revolves around the two main capabilities of SPM: imaging and measuring interactions. Each chapter introduces key theoretical concepts and basic equations of the particular stand-alone technique with which the scanning probe microscopies are combined. Chapters end with the SPM-technique combination and some real-world examples in which the combination has been devised or used. Most chapters include a historical review of the techniques and numerous illustrations to support key ideas and provide the reader with intuitive understanding. To understand the limitations of any technique also means to understand how this technique works. This book has devoted a considerable amount of space in explaining the basics of each technique as they are being introduced. At the same time, it avoids explaining the particularities of each SPM-based technique and opts for a rather generalized approach. In short, the book's focus is not on what SPM can do, but rather on what SPM cannot do and, most specifically, on presenting the experimental approaches that circumvent these limitations.
The emerging field of lipidomics has been made possible because of advances in mass spectrometry, and in particular tandem mass spectrometry of lipid ions generated by electrospray ionization. The ability to carry out basic biochemical studies of lipids using electrospray ionization is predicated upon understanding the behaviour of lipid derived ions following collision induced decomposition and mechanisms of product ion formation. During the past 20 years, a wealth of information has been generated about lipid molecules that are now analysed by mass spectrometry, however there is no central source where one can obtain basic information about how these very diverse biomolecules behave following collisional activation. This book brings together, in one volume, this information so that investigators considering using tandem mass spectrometry to structurally characterize lipids or to quantitate their occurrence in a biological matrix, will have a convenient source to review mechanism of decomposition reactions related to the diversity of lipid structures. A separate chapter is devoted to each of seven major lipid classes including fatty acids, eicosanoids and bioactive lipid mediators, fatty acyl esters and amides, glycerol esters, glycerophospholipids, sphingolipids, and steroids. Mechanistic details are provided for understanding the pathways of formation of major product ions and ions used for structural characterization. In most cases specific ancillary information has been critical to understand the pathways, including isotope labeling and high resolution analysis of precursor and product ions. For a few specific examples such data is missing and pathways are proposed as a means to initiate further mass spectral experiments to prove or disprove pathway hypotheses. While this work largely centres on the lipid biochemistry of animal (mammalian) systems, general principles can be taken from the specific examples and applied to lipid biochemistry found in plants, fungi, prokaryotes and archeal organisms.
This revised and updated Second Edition of the best-selling reference/text is essential reading for students and scientists who seek a thorough and practical introduction to the field of polymer spectroscopy. Eleven chapters cover the fundamental aspects and experimental applications of the primary spectroscopic methods. The advantages and disadvantages of the various techniques for particular polymer systems are also discussed. The goal of the author is not to make the reader an expert in the field, but rather to provide enough information about the different spectroscopic methods that the reader can determine how the available techniques can be used to solve a particular polymer problem. This Second Edition contains new and updated information on techniques in IR and NMR, as well as an all-new chapter on Mass Spectrometry.
This volume dedicated to the memory of Marcel Sergent who was a leader in this field for many years, addresses past achievements and recent developments in this vibrant area of research. Large classes of ligated transition metal clusters are produced either exclusively or most reliably by means of high-temperature solid-state reactions. Among them, the Chevrel-Sergent phases and related materials have generated enormous interest since their discovery in 1971. Today, these materials and their numerous derivatives still constitute a vivid area of research finding some applications not only in superconductivity, but also in catalysis, optics or thermoelectricity to mention a few.
This practical guide to the trace analysis of metals and alloys details minor, trace, and ultratrace methods; addresses the essential stages that precede measurement; and highlights the measurement systems most likely to be used by the pragmatic analyst. Features key material on inclusion and phase isolation, never-before published in any English-language reference Designed to provide useful maps and signposts for metals analysts who must verify that stringent trace level compositional specifications have been met, Trace Elemental Analysis of Metals examines sampling, contamination control, isolation, and preconcentration covers molecular absorption, atomic absorption, atomic emission, mass spectrometry, and other measurement systems discusses the critical importance of inclusions and phases in obtaining accurate trace determinations explores quality issues surrounding method validation, analytical control verification, and reference material needs defines a style for treating results slightly above the noise limit of the instrumentation provides painstakingly referenced, step-by-step instructions for specific alloy systems and methodologies supplies a concise overview of the chemical and instrumental techniques widely available in industrial laboratories includes an easy-to-use glossary defining terms, specialized usage, and jargon related to trace work in metals and alloys reviews the conventions of reporting at, and near, the detection and quantification limits of a procedure and more Offering direction to analysts seeking consistent data while working within the limits of available technology, Trace Elemental Analysis of Metals is a valuable guide suited to analytical, inorganic, and materials chemists; spectroscopists; environmental scientists; and upper-level undergraduate and graduate students in these disciplines.
Including contributions from instrument manufacturers! Geological aging, chemical reaction mechanism studies, determination of atomic weights and investigation of metabolic pathways—these are all examples of the truly diverse nature of isotope ratio mass spectrometry (IRMS). With applications in fields as far apart as analytical chemistry and astronomy, geochemistry and biomedical science, it is little wonder that this technique is becoming increasingly popular. In Modern Isotope Ratio Mass Spectrometry,the first comprehensive book written on the subject for twenty-five years, examples from all these areas, and many more,are given. All modern developments in this fascinating field are discussed with special attention paid to technical details and instrumentation.
Lasers in Analytical Atomic Spectroscopy Edited by Joseph Sneddon • Terry L. Thiem • Yong-Ill Lee This book focuses primarily on the use of lasers in analytical atomic spectroscopy with optical detection, and also includes a chapter describing the use of lasers in inductively coupled plasma—mass spectroscopy (ICP—MS). The book begins with a brief introduction to atomic spectroscopy and lasers, providing the reader with basic theory and information on instrumentation in conventional atomic spectroscopy. Next, the properties, types, and principles of lasers are discussed using a non-mathematical approach. The main section of the book provides detailed descriptions of the four major areas of laser application in analytical atomic spectroscopy, each discussed by an expert in the field: laser excited atomic fluorescence spectrometry (LEAFS); laser ablation for sample introduction, particularly in inductively coupled plasma—atomic emission spectrometry (ICP—AES) and ICP—MS; laser induced breakdown (emission) spectrometry (LIBS); and laser-enhanced ionization (LEI) spectrometry. Lasers in Analytical Atomic Spectroscopy will be of interest to spectroscopists, analytical chemists, and graduate students in these areas. Also available from VCH Applied Laser Spectroscopy Techniques, Instrumentation, and Applications D.L. Andrews, ed. Hardcover. ISBN 1-56081-023-8 Inductively Coupled Plasmas in Analytical Atomic Spectroscopy Second, Revised and Enlarged Edition A. Montaser and D.W. Golightly, eds. Hardcover. ISBN 1-56081-514-0 Atomic Absorption Spectrometry Second, Completely Revised Edition B. Welz Hardcover. ISBN 3-527-26193-1
This author's second volume introduces basic principles of interpreting infrared spectral data, teaching its readers to make sense of the data coming from an infrared spectrometer. Contents include spectra and diagnostic bands for the more common functional groups as well as chapters on polyester spectra and interpretation aids.
Second Edition provides up-to-the-minute discussions on the application of mass spectrometry to the biological sciences. Shows how and why experiments are performed and furnishes details to facilitate duplication of results.
Raman spectroscopy is now well established as one of the most versatile techniques for the chemical analysis of molecular species. Major advances have been made in a number of areas in the field in recent years which enable the researcher and practising analytical scientist to solve the complex chemical problems of today. The ten chapters in Modern Techniques in Raman Spectroscopy cover some of the most exciting fields of research in modern Raman techniques, and illustrate the power of modern Raman spectroscopy for molecular analysis in both theoretical and practical problems. The volume opens with chapters on signal expressions and instrumentation in Raman spectroscopy, and then goes on to discuss in detail Fourier and Hadamard Transform Raman spectroscopies, micro-Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman optical activity, coherent and time-resolved techniques and the use of optical fibres in Raman spectroscopy. The chapters are written by leading researchers from a broad range of disciplines. Throughout, applications of the various techniques are discussed. Modern Techniques in Raman Spectroscopy will be of great interest to all those involved in molecular spectroscopy, in both industry and academia. The inclusion of a wide range of modern techniques in a single volume will make this a particularly valuable work to researchers across the whole field of Raman spectroscopy.
From Hiroshima to the Iceman: The Development and Applications of Accelerator Mass Spectrometry presents a fascinating account of a breakthrough in science and the insights it has brought that would not have been possible without it. Involved since its invention, Harry Gove recounts the story of the development of accelerator mass spectrometry and its use as an ultrasensitive detection technique in many fields of science and the arts. A key advantage of the technique is that it requires only very small samples of material. The book explores the areas where the technique has increased understanding and provided solutions to problems, including the clean-up and storage of nuclear waste, the effects of the atomic bombing of Hiroshima, biomedical research, the settling of the Americas, and carbon dating of many precious artifacts. Objects dated include the Turin Shroud, the Iceman, the elephant bird egg, and the Dead Sea scrolls.
In this authoritative review, leading international researchers
explore the growing range of applications of stable isotope
techniques for probing and integrating biological processes and
palaeoclimatic cycles. The interdisciplinary approach covers a wide
range of issues, opportunities and developments, setting
interactions with plants in the context of water and nutrient
cycles, exchanges with the atmosphere and modelling past and
present climate change.
The accurate interpretation of infrared spectra of organic structures is an extremely important tool for the analytical chemist. Using up-to-date source material, this volume presents a compilation of the infrared absorption regions of ninety of the most important organic molecular fragments. This highly practical guide introduces the reader to a straightforward technique for determining all the fundamental vibrations of a molecular fragment. The set of normal vibrations and the infrared absorption regions of ninety molecular fragments are then discussed and tabulated. The discussion of each fragment is accompanied by a large number of references. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures offers the analytical chemist the possibility of a more profound interpretation of infrared spectra. In addition, it assumes only a basic knowledge of infrared spectra, and so will prove very useful for non-specialists who use infrared spectroscopy in analysis.
The First Book on CRS Microscopy Compared to conventional Raman microscopy, coherent Raman scattering (CRS) allows label-free imaging of living cells and tissues at video rate by enhancing the weak Raman signal through nonlinear excitation. Edited by pioneers in the field and with contributions from a distinguished team of experts, Coherent Raman Scattering Microscopy explains how CRS can be used to obtain a point-by-point chemical map of live cells and tissues. In color throughout, the book starts by establishing the foundation of CRS microscopy. It discusses the principles of nonlinear optical spectroscopy, particularly coherent Raman spectroscopy, and presents the theories of contrast mechanisms pertinent to CRS microscopy. The text then provides important technical aspects of CRS microscopy, including microscope construction, detection schemes, and data analyses. It concludes with a survey of applications that demonstrate how CRS microscopy has become a valuable tool in biomedicine. Due to its label-free, noninvasive examinations of living cells and organisms, CRS microscopy has opened up exciting prospects in biology and medicine-from the mapping of 3D distributions of small drug molecules to identifying tumors in tissues. An in-depth exploration of the theories, technology, and applications, this book shows how CRS microscopy has impacted human health and will deepen our understanding of life processes in the future.
By delivering concentrated information in three different volumes,
the editors of the Practical Aspects of Ion Trap Mass Spectrometry
mini-series present in-depth reviews on mainstream developments in
each active and popular area. Contributing authors provide concise
reports illustrating successful approaches to difficult analytical
problems across the basic scientific disciplines.
Fundamentals of Ion Trap Mass Spectrometry presents an account of
the development and theory of the quadrupole ion trap and its
utilization as an ion storage device, a reactor for ion/molecular
reactions, and a mass spectrometer. It also expands the
appreciation of ion traps from that of a unique arrangement of
electrodes of hyperbolic form (and having a pure quadrupole field)
to a series of ion traps having fields with hexapole and octopole
components and introduces the practical ion trapping device in
which electrode spacing has been increased.
Packed with reviews plus new results from the author's
laboratories, the first-of-its-kind work offers a timely and
authoritative treatise on the use of mass spectral techniques in
organic stereochemistry.
This work covers important aspects of X-ray spectrometry, from basic principles to the selection of instrument parameters and sample preparation. This edition explicates the use of combined X-ray fluorescence and X-ray diffraction data, and features new applications in environmental studies, forensic science, archeometry and the analysis of metals and alloys, minerals and ore, ceramic materials, catalysts and trace metals.;This work is intended for spectroscopists, analytical chemists, materials scientists, experimental physicists, mineralogists, biologists, geologists and graduate-level students in these disciplines.
Provides a self-teaching reference text for forensic chemistry laboratories and law enforcement agencies world-wide. The text includes sections on the importance of physical examinations of drugs and their wrappings; and the use of gas and high-performance chromatography.
This book provides an overview of the state of the art in pharmaceutical applications of UV-VIS spectroscopy. This book presents the fundamentals for the beginner and, for the expert, discusses both qualitative and quantitative analysis problems. Several chapters focus on the determination of drugs in various matrices, the coupling of chromatographic and spectrophotometric methods, and the problems associated with the use of chemical reactions prior to spectrophotometric measurements. The final chapter provides a survey of the spectrophotometric determination of the main families of drugs, emphasizing the achievements of the last decade.
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners. |
![]() ![]() You may like...
Shakespeare Tragedies (Romeo and Juliet…
William Shakespeare
Hardcover
R1,065
Discovery Miles 10 650
Boxing and Performance - Memetic…
Sarah Crews, P. Solomon Lennox
Hardcover
Music-Dance - Sound and Motion in…
Patrizia Veroli, Gianfranco Vinay
Hardcover
R4,469
Discovery Miles 44 690
|