![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications
5G NR: The Next Generation Wireless Access Technology, Second Edition, follows the authors' highly celebrated books on 3G and 4G and provides a new level of insight into 5G NR. After background discussion of 5G, including requirements, spectrum aspects, and the standardization timeline, all technology features of the first phase of NR are described in detail. The book covers the NR physical-layer structure and higher-layer protocols, RF and spectrum aspects, and co-existence and interworking with LTE. The book provides a good foundation in NR and different NR technology components, giving insight into why a certain solution has been selected. This second edition is updated to reflect the latest developments in Release 16 and includes brand new chapters on: NR in unlicensed spectrum; NR-U in Rel-16; IAB; V2X and sidelink in Rel-16; industrial IoT; IIoT and referring to the URLLC enhancements for PDCCH; RIM/CL; and positioning. Also included are the key radio-related requirements of NR; design principles; technical features of basic NR transmission structure-showing where it was inherited from LTE, where it deviates from it, and the reasons why- NR multi-antenna transmission functionality; detailed description of the signals and functionality of the initial NR access, including signals for synchronization and system information; random access and paging; LTE/NR co-existence in the same spectrum and the benefits of their interworking as one system; and different aspects of mobility in NR. RF requirements for NR are described for BS and UE, the legacy bands, and for the new mm-wave bands.
The gripping, behind-the scenes story of one of the most sophisticated surveillance weapons ever created – and an existential threat to democracy and human rights. Pegasus is widely regarded as the most powerful cyber-surveillance system on the market – available to any government that can afford its multimillion-dollar price tag. The system’s creator, the NSO group, a private corporation headquartered in Israel, boasts about its ability to thwart terrorists and criminals. But the Pegasus system doesn’t only catch terrorists and criminals. Pegasus has been used by repressive regimes to spy on thousands of innocent people around the world: heads of state, diplomats, human rights defenders, lawyers, political opponents, and journalists. Virtually undetectable, the system can track a person’s daily movement in real time, gain control of the device’s microphones and cameras at will, and capture all videos, photos, emails, texts, and passwords – encrypted or not. Its full reach is not even known. This is the gripping story of how Pegasus was uncovered, written by Laurent Richard and Sandrine Rigaud, the two intrepid reporters who revealed the scandal in collaboration with an international consortium of journalists. Their findings shook the world. Tense and compelling, Pegasus reveals how thousands of lives have been turned upside down by this unprecedented threat, and exposes the chilling new ways governments and corporations are laying waste to human rights – and silencing innocent citizens.
Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The book's chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. This book is an ideal reference for R&D engineers working on developing next generation optical components, scientists involved with research on fiber amplifiers and lasers, graduate students, and researchers working in the fields of optical communications and quantum information.
Computing in Communication Networks: From Theory to Practice provides comprehensive details and practical implementation tactics on the novel concepts and enabling technologies at the core of the paradigm shift from store and forward (dumb) to compute and forward (intelligent) in future communication networks and systems. The book explains how to create virtualized large scale testbeds using well-established open source software, such as Mininet and Docker. It shows how and where to place disruptive techniques, such as machine learning, compressed sensing, or network coding in a newly built testbed. In addition, it presents a comprehensive overview of current standardization activities. Specific chapters explore upcoming communication networks that support verticals in transportation, industry, construction, agriculture, health care and energy grids, underlying concepts, such as network slicing and mobile edge cloud, enabling technologies, such as SDN/NFV/ ICN, disruptive innovations, such as network coding, compressed sensing and machine learning, how to build a virtualized network infrastructure testbed on one's own computer, and more.
Probabilistic Graphical Models for Computer Vision introduces probabilistic graphical models (PGMs) for computer vision problems and teaches how to develop the PGM model from training data. This book discusses PGMs and their significance in the context of solving computer vision problems, giving the basic concepts, definitions and properties. It also provides a comprehensive introduction to well-established theories for different types of PGMs, including both directed and undirected PGMs, such as Bayesian Networks, Markov Networks and their variants.
Cellular Internet of Things: From Massive Deployments to Critical 5G Applications, Second Edition, gives insights into the recent and rapid work performed by the 3rd Generation Partnership Project (3GPP) and the Multefire Alliance (MFA) to develop systems for the Cellular IoT. Beyond the technologies, readers will learn what the mMTC and cMTC market segments look like, deployment options and expected performance in terms of system capacity, expected battery lifetime, data throughput, access delay time and device cost, regulations for operation in unlicensed frequency bands, and how they impact system design and performance. This new edition contains updated content on the latest EC-GSM IoT, LTE-M and NB-IoT features in 3GPP Release 15, critical communication, i.e. URLLC, specified in 3GPP Release 15 for both LTE and NR, LTE-M and NB-IoT for unlicensed frequency bands specified in the Multefire Alliance (MFA), and an updated outlook of what the future holds in Industrial IoT and drone communications, amongst other topics.
Smartphone Based Medical Diagnostics provides the theoretical background and practical applications for leveraging the strengths of smartphones toward a host of different diagnostics, including, but not limited to, optical sensing, electrochemical detection, integration with other devices, data processing, data sharing and storage. The book also explores the translational, regulatory and commercialization challenges of smartphone incorporation into point-of-care medical diagnostics and food safety settings.
Next Generation of CubeSats and SmallSats: Enabling Technologies, Missions, and Markets provides a comprehensive understanding of the small and medium sized satellite approach and its potentialities and limitations. The book analyzes promising applications (e.g., constellations and distributed systems, small science platforms that overachieve relative to their development time and cost) as paradigm-shifting solutions for space exploitation, with an analysis of market statistics and trends and a prediction of where the technologies, and consequently, the field is heading in the next decade. The book also provides a thorough analysis of CubeSat potentialities and applications, and addresses unique technical approaches and systems strategies. Throughout key sections (introduction and background, technology details, systems, applications, and future prospects), the book provides basic design tools scaled to the small satellite problem, assesses the technological state-of-the-art, and describes the most recent advancements with a look to the near future. This new book is for aerospace engineering professionals, advanced students, and designers seeking a broad view of the CubeSat world with a brief historical background, strategies, applications, mission scenarios, new challenges and upcoming advances.
CONVERGED COMMUNICATIONS A one-of-a-kind exploration of the past, present, and future of telecommunications In Converged Communications: Evolution from Telephony to 5G Mobile Internet, telecommunications industry veteran Erkki Koivusalo delivers an essential reference describing how different communications systems work, how they have evolved from fixed telephone networks to the latest 5G mobile systems, and how the voice and data services converged. The central theme of the book is to build deeper understanding about incremental technological progress by introducing both state of the art and their predecessor technologies. The book explores four main areas, including fixed telephone systems, data communication systems, mobile cellular systems, and IP multimedia systems. It clearly explains architectures, protocols, and functional procedures, and discusses a variety of topics ranging from physical layer processes to system level interactions. Converged -Communications offers: In-depth treatments of fixed telephone and transmission systems, including operation of telephone exchanges and signaling systems Comprehensive explorations of data communication systems, including transmission of data over telephone lines and data network technologies, such as Ethernet and TCP/IP Incisive discussions of mobile cellular systems, including GSM, 3G, LTE, VoLTE and 5G Insightful analysis of incremental system evolution to justify various design choices made The book is supported with extensive online appendices, which covers communication system concepts, an overview of standardization, various technologies used in the past, state-of-the art technologies such as WLAN, cable modems, and FTTx, complementing the other systems described in the book which have evolved from the fixed telephone network. Perfect for network operators, system integrators, and communication system vendors, Converged Communications: Evolution from Telephony to 5G Mobile Internet will also earn a place in the libraries of undergraduate and graduate students studying telecommunications and mobile systems. Constructive comments and improvement proposals about Converged Communications or its online appendices can be sent by email to address [email protected]. The feedback will be considered for possible new editions of the book or the revisions of the appendices.
Ultra-Wideband Surveillance Radar is an emerging technology for detecting and characterizing targets and cultural features for military and geosciences applications. To characterize objects near and under severe clutter, it is necessary to have fine range and cross range resolution. The resultant wide bandwidth classifies the systems as ultra-wideband, requiring special treatment in system technology and frequency allocation. This book explores several UWB surveillance radar prototypes, including Hostile Weapons Locator System (HOWLS), Multibeam Modular Surveillance Radar (MMSR), and geoscience synthetic aperture radar (GeoSAR). These prototype radars illustrated the early development of multi-mode capabilities leading to modern radar systems. Based on the results of these prototypes and recent radar technology publications a novel multi-mode, multi-channel radar is presented and analysed. The book begins with a history of airborne surveillance radar, then goes on to provide systematic and detailed coverage of the following topics and technologies: surveillance radar detection; surveillance radar modes; UWB antennas; ultra-Wideband SAR processing; interferometric radar modes; UWB ground moving target detection; UWB spectrum compliance; and UWB multimode operation. The first book to cover these new capabilities, this is an important reference for radar engineers, especially those working in geosciences and military applications. It is also relevant to academic and advanced engineering researchers developing new radar technologies and algorithms for image processing, as well as the advanced electromagnetics research community.
Short-range Wireless Communication, Third Edition, describes radio theory and applications for wireless communication with ranges of centimeters to hundreds of meters. Topics covered include radio wave propagation, the theory of antennas and transmission lines, architectures of transmitters, and radio system design guidelines as a function of basic communication parameters, such as sensitivity, noise and bandwidth. Topics new to this edition include MIMO, metamaterials, inductance coupling for loop antennas, very high throughput Wi-Fi specifications, Bluetooth Low Energy, expanded coverage of RFID, wireless security, location awareness, wireless sensor networks, Internet of Things, millimeter wave and optical short-range communications, body area networks, energy harvesting, and more. Engineers, programmers, technicians and sales management personnel who support short-range wireless products will find the book a comprehensive and highly readable source to boost on-the-job performance and satisfaction.
This book introduces advanced sparsity-driven models and methods and their applications in radar tasks such as detection, imaging and classification. Compressed sensing (CS) is one of the most active topics in the signal processing area. By exploiting and promoting the sparsity of the signals of interest, CS offers a new framework for reducing data without compromising the performance of signal recovery, or for enhancing resolution without increasing measurements. An introductory chapter outlines the fundamentals of sparse signal recovery. The following topics are then systematically and comprehensively addressed: hybrid greedy pursuit algorithms for enhancing radar imaging quality; two-level block sparsity model for multi-channel radar signals; parametric sparse representation for radar imaging with model uncertainty; Poisson-disk sampling for high-resolution and wide-swath SAR imaging; when advanced sparse models meet coarsely quantized radar data; sparsity-aware micro-Doppler analysis for radar target classification; and distributed detection of sparse signals in radar networks via locally most powerful test. Finally, a concluding chapter summarises key points from the preceding chapters and offers concise perspectives. The book focuses on how to apply the CS-based models and algorithms to solve practical problems in radar, for the radar and signal processing research communities.
This book begins with the history and fundamentals of optical fiber communications. Then, briefly introduces existing optical multiplexing techniques and finally focuses on spatial domain multiplexing (SDM), aka space division multiplexing, and orbital angular momentum of photon based multiplexing. These are two emerging multiplexing techniques that have added two new degrees of photon freedom to optical fibers. |
![]() ![]() You may like...
New all-in-one: Busy Banda: Level 5…
Mart Meij, Beatrix de Villiers
Paperback
New all-in-one: Gerry's silkworms: Big…
Mart Meij, Beatrix de Villiers
Paperback
Sustainability in the Chemistry…
Catherine Middlecamp, Andrew Jorgensen
Hardcover
R5,814
Discovery Miles 58 140
Practical Biometrics - From Aspiration…
Julian Ashbourn
Hardcover
|