![]() |
![]() |
Your cart is empty |
||
Books > Language & Literature > Language & linguistics > Computational linguistics
"Mobile Speech and Advanced Natural Language Solutions" presents the discussion of the most recent advances in intelligent human-computer interaction, including fascinating new study findings on talk-in-interaction, which is the province of conversation analysis, a subfield in sociology/sociolinguistics, a new and emerging area in natural language understanding. Editors Amy Neustein and Judith A. Markowitz have recruited a talented group of contributors to introduce the next generation natural language technologies for practical speech processing applications that serve the consumer's need for well-functioning natural language-driven personal assistants and other mobile devices, while also addressing business' need for better functioning IVR-driven call centers that yield a more satisfying experience for the caller. This anthology is aimed at two distinct audiences: one consisting of speech engineers and system developers; the other comprised of linguists and cognitive scientists. The text builds on the experience and knowledge of each of these audiences by exposing them to the work of the other.
Karen Sparck Jones is one of the major figures of 20th century and early 21st Century computing and information processing. Her ideas have had an important influence on the development of Internet Search Engines. Her contribution has been recognized by awards from the natural language processing, information retrieval and artificial intelligence communities, including being asked to present the prestigious Grace Hopper lecture. She continues to be an active and influential researcher. Her contribution to the scientific evaluation of the effectiveness of such computer systems has been quite outstanding. This book celebrates the life and work of Karen Sparck Jones in her seventieth year. It consists of fifteen new and original chapters written by leading international authorities reviewing the state of the art and her influence in the areas in which Karen Sparck Jones has been active. Although she has a publication record which goes back over forty years, it is clear even the very early work reviewed in the book can be read with profit by those working on recent developments in information processing like bioinformatics and the semantic web.
Data driven methods have long been used in Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis and have more recently been introduced for dialogue management, spoken language understanding, and Natural Language Generation. Machine learning is now present "end-to-end" in Spoken Dialogue Systems (SDS). However, these techniques require data collection and annotation campaigns, which can be time-consuming and expensive, as well as dataset expansion by simulation. In this book, we provide an overview of the current state of the field and of recent advances, with a specific focus on adaptivity.
Semantic fields are lexically coherent - the words they contain co-occur in texts. In this book the authors introduce and define semantic domains, a computational model for lexical semantics inspired by the theory of semantic fields. Semantic domains allow us to exploit domain features for texts, terms and concepts, and they can significantly boost the performance of natural-language processing systems. Semantic domains can be derived from existing lexical resources or can be acquired from corpora in an unsupervised manner. They also have the property of interlinguality, and they can be used to relate terms in different languages in multilingual application scenarios. The authors give a comprehensive explanation of the computational model, with detailed chapters on semantic domains, domain models, and applications of the technique in text categorization, word sense disambiguation, and cross-language text categorization. This book is suitable for researchers and graduate students in computational linguistics.
This volume brings together a number of corpus-based studies dealing with language varieties. These contributions focus on contemporary lines of research interests, and include language teaching and learning, translation, domain-specific grammatical and textual phenomena, linguistic variation and gender, among others. Corpora used in these studies range from highly specialized texts, including earlier scientific texts, to regional varieties. Under the umbrella of corpus linguistics, scholars also apply other distinct methodological approaches to their data in order to offer new insights into old and new topics in linguistics and applied linguistics. Another important contribution of this book lies in the obvious didactic implications of the results obtained in the individual chapters for domain-based language teaching.
Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition. The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.
A Journey Through Cultures addresses one of the hottest topics in contemporary HCI: cultural diversity amongst users. For a number of years the HCI community has been investigating alternatives to enhance the design of cross-cultural systems. Most contributions to date have followed either a 'design for each' or a 'design for all' strategy. A Journey Through Cultures takes a very different approach. Proponents of CVM - the Cultural Viewpoint Metaphors perspective - the authors invite HCI practitioners to think of how to expose and communicate the idea of cultural diversity. A detailed case study is included which assesses the metaphors' potential in cross-cultural design and evaluation. The results show that cultural viewpoint metaphors have strong epistemic power, leveraged by a combination of theoretic foundations coming from Anthropology, Semiotics and the authors' own work in HCI and Semiotic Engineering. Luciana Salgado, Carla Leitao and Clarisse de Souza are members of SERG, the Semiotic Engineering Research Group at the Departamento de Informatica of Rio de Janeiro's Pontifical Catholic University (PUC-Rio).
The practical task of building a talking robot requires a theory of how natural language communication works. Conversely, the best way to computationally verify a theory of natural language communication is to demonstrate its functioning concretely in the form of a talking robot, the epitome of human-machine communication. To build an actual robot requires hardware that provides appropriate recognition and action interfaces, and because such hardware is hard to develop the approach in this book is theoretical: the author presents an artificial cognitive agent with language as a software system called database semantics (DBS). Because a theoretical approach does not have to deal with the technical difficulties of hardware engineering there is no reason to simplify the system - instead the software components of DBS aim at completeness of function and of data coverage in word form recognition, syntactic-semantic interpretation and inferencing, leaving the procedural implementation of elementary concepts for later. In this book the author first examines the universals of natural language and explains the Database Semantics approach. Then in Part I he examines the following natural language communication issues: using external surfaces; the cycle of natural language communication; memory structure; autonomous control; and learning. In Part II he analyzes the coding of content according to the aspects: semantic relations of structure; simultaneous amalgamation of content; graph-theoretical considerations; computing perspective in dialogue; and computing perspective in text. The book ends with a concluding chapter, a bibliography and an index. The book will be of value to researchers, graduate students and engineers in the areas of artificial intelligence and robotics, in particular those who deal with natural language processing.
This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.
The book focuses on the part of the audio conversation not related to language such as speaking rate (in terms of number of syllables per unit time) and emotion centric features. This text examines using non-linguistics features to infer information from phone calls to call centers. The author analyzes "how" the conversation happens and not "what" the conversation is about by audio signal processing and analysis.
This book is written for both linguists and computer scientists working in the field of artificial intelligence as well as to anyone interested in intelligent text processing. Lexical function is a concept that formalizes semantic and syntactic relations between lexical units. Collocational relation is a type of institutionalized lexical relations which holds between the base and its partner in a collocation. Knowledge of collocation is important for natural language processing because collocation comprises the restrictions on how words can be used together. The book shows how collocations can be annotated with lexical functions in a computer readable dictionary - allowing their precise semantic analysis in texts and their effective use in natural language applications including parsers, high quality machine translation, periphrasis system and computer-aided learning of lexica. The books shows how to extract collocations from corpora and annotate them with lexical functions automatically. To train algorithms, the authors created a dictionary of lexical functions containing more than 900 Spanish disambiguated and annotated examples which is a part of this book. The obtained results show that machine learning is feasible to achieve the task of automatic detection of lexical functions.
This book constitutes the refereed proceedings of the 5th International Conference of the CLEF Initiative, CLEF 2014, held in Sheffield, UK, in September 2014. The 11 full papers and 5 short papers presented were carefully reviewed and selected from 30 submissions. They cover a broad range of issues in the fields of multilingual and multimodal information access evaluation, also included are a set of labs and workshops designed to test different aspects of mono and cross-language information retrieval systems
Information extraction (IE) and text summarization (TS) are powerful technologies for finding relevant pieces of information in text and presenting them to the user in condensed form. The ongoing information explosion makes IE and TS critical for successful functioning within the information society. These technologies face particular challenges due to the inherent multi-source nature of the information explosion. The technologies must now handle not isolated texts or individual narratives, but rather large-scale repositories and streams---in general, in multiple languages---containing a multiplicity of perspectives, opinions, or commentaries on particular topics, entities or events. There is thus a need to adapt existing techniques and develop new ones to deal with these challenges. This volume contains a selection of papers that present a variety of methodologies for content identification and extraction, as well as for content fusion and regeneration. The chapters cover various aspects of the challenges, depending on the nature of the information sought---names vs. events,--- and the nature of the sources---news streams vs. image captions vs. scientific research papers, etc. This volume aims to offer a broad and representative sample of studies from this very active research field.
This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications - gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.
This is the first volume of a unique collection that brings together the best English-language problems created for students competing in the Computational Linguistics Olympiad. These problems are representative of the diverse areas presented in the competition and designed with three principles in mind: * To challenge the student analytically, without requiring any explicit knowledge or experience in linguistics or computer science; * To expose the student to the different kinds of reasoning required when encountering a new phenomenon in a language, both as a theoretical topic and as an applied problem; * To foster the natural curiosity students have about the workings of their own language, as well as to introduce them to the beauty and structure of other languages; * To learn about the models and techniques used by computers to understand human language. Aside from being a fun intellectual challenge, the Olympiad mimics the skills used by researchers and scholars in the field of computational linguistics. In an increasingly global economy where businesses operate across borders and languages, having a strong pool of computational linguists is a competitive advantage, and an important component to both security and growth in the 21st century. This collection of problems is a wonderful general introduction to the field of linguistics through the analytic problem solving technique. "A fantastic collection of problems for anyone who is curious about how human language works! These books take serious scientific questions and present them in a fun, accessible way. Readers exercise their logical thinking capabilities while learning about a wide range of human languages, linguistic phenomena, and computational models. " - Kevin Knight, USC Information Sciences Institute
- Donation refusal is high in all the regions of Argentina. - The deficient operative structure is a negative reality that allows inadequate donor maintenance and organ procurement. - In more developed regions, there are a high number of organs which are not utilized. This is true for heart, liver and lungs. Small waiting lists for these organs probably reflect an inadequate economic coverage for these organ transplant activities. - There is a long waiting list for cadaveric kidney transplants, which reflect poor procurement and transplant activity. - Lack of awareness by many physicians leads to the denouncing of brain deaths. In spite of these factors, we can say that there has been a significant growth in organ procuration and transplantation in 1993, after the regionalization of the INCUCAI. Conclusions Is there a shortage of organs in Argentina? There may be. But the situation in Argentina differs from that in Europe, as we have a pool of organs which are not utilized (donation refusal, operational deficits, lack of denouncing of brain deaths). Perhaps, in the future, when we are able to make good use of all the organs submitted for transplantation, we will be able to say objectively whether the number of organs is sufficient or not. Acknowledgements I would like to thank the University of Lyon and the Merieux Foundation, especially Professors Traeger, Touraine and Dr. Dupuy for the honour of being invited to talk about the issue of organ procurement.
The explosion of information technology has led to substantial growth of web-accessible linguistic data in terms of quantity, diversity and complexity. These resources become even more useful when interlinked with each other to generate network effects. The general trend of providing data online is thus accompanied by newly developing methodologies to interconnect linguistic data and metadata. This includes linguistic data collections, general-purpose knowledge bases (e.g., the DBpedia, a machine-readable edition of the Wikipedia), and repositories with specific information about languages, linguistic categories and phenomena. The Linked Data paradigm provides a framework for interoperability and access management, and thereby allows to integrate information from such a diverse set of resources. The contributions assembled in this volume illustrate the band-width of applications of the Linked Data paradigm for representative types of language resources. They cover lexical-semantic resources, annotated corpora, typological databases as well as terminology and metadata repositories. The book includes representative applications from diverse fields, ranging from academic linguistics (e.g., typology and corpus linguistics) over applied linguistics (e.g., lexicography and translation studies) to technical applications (in computational linguistics, Natural Language Processing and information technology). This volume accompanies the Workshop on Linked Data in Linguistics 2012 (LDL-2012) in Frankfurt/M., Germany, organized by the Open Linguistics Working Group (OWLG) of the Open Knowledge Foundation (OKFN). It assembles contributions of the workshop participants and, beyond this, it summarizes initial steps in the formation of a Linked Open Data cloud of linguistic resources, the Linguistic Linked Open Data cloud (LLOD).
It is becoming crucial to accurately estimate and monitor speech quality in various ambient environments to guarantee high quality speech communication. This practical hands-on book shows speech intelligibility measurement methods so that the readers can start measuring or estimating speech intelligibility of their own system. The book also introduces subjective and objective speech quality measures, and describes in detail speech intelligibility measurement methods. It introduces a diagnostic rhyme test which uses rhyming word-pairs, and includes: An investigation into the effect of word familiarity on speech intelligibility. Speech intelligibility measurement of localized speech in virtual 3-D acoustic space using the rhyme test. Estimation of speech intelligibility using objective measures, including the ITU standard PESQ measures, and automatic speech recognizers.
Novel Techniques for Dialectal Arabic Speech describes approaches to improve automatic speech recognition for dialectal Arabic. Since speech resources for dialectal Arabic speech recognition are very sparse, the authors describe how existing Modern Standard Arabic (MSA) speech data can be applied to dialectal Arabic speech recognition, while assuming that MSA is always a second language for all Arabic speakers. In this book, Egyptian Colloquial Arabic (ECA) has been chosen as a typical Arabic dialect. ECA is the first ranked Arabic dialect in terms of number of speakers, and a high quality ECA speech corpus with accurate phonetic transcription has been collected. MSA acoustic models were trained using news broadcast speech. In order to cross-lingually use MSA in dialectal Arabic speech recognition, the authors have normalized the phoneme sets for MSA and ECA. After this normalization, they have applied state-of-the-art acoustic model adaptation techniques like Maximum Likelihood Linear Regression (MLLR) and Maximum A-Posteriori (MAP) to adapt existing phonemic MSA acoustic models with a small amount of dialectal ECA speech data. Speech recognition results indicate a significant increase in recognition accuracy compared to a baseline model trained with only ECA data.
This two-volume set, consisting of LNCS 8403 and LNCS 8404, constitutes the thoroughly refereed proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2014, held in Kathmandu, Nepal, in April 2014. The 85 revised papers presented together with 4 invited papers were carefully reviewed and selected from 300 submissions. The papers are organized in the following topical sections: lexical resources; document representation; morphology, POS-tagging, and named entity recognition; syntax and parsing; anaphora resolution; recognizing textual entailment; semantics and discourse; natural language generation; sentiment analysis and emotion recognition; opinion mining and social networks; machine translation and multilingualism; information retrieval; text classification and clustering; text summarization; plagiarism detection; style and spelling checking; speech processing; and applications.
Research writing and teaching is a great challenge for novice scholars, especially L2 writers. This book presents a compelling and much-needed automated writing evaluation (AWE) reinforcement to L2 research writing pedagogy.
This white paper is part of a series that promotes knowledge about language technology and its potential. It addresses educators, journalists, politicians, language communities and others. The availability and use of language technology in Europe varies between languages. Consequently, the actions that are required to further support research and development of language technologies also differ for each language. The required actions depend on many factors, such as the complexity of a given language and the size of its community. META-NET, a Network of Excellence funded by the European Commission, has conducted an analysis of current language resources and technologies. This analysis focused on the 23 official European languages as well as other important national and regional languages in Europe. The results of this analysis suggest that there are many significant research gaps for each language. A more detailed expert analysis and assessment of the current situation will help maximise the impact of additional research and minimize any risks. META-NET consists of 54 research centres from 33 countries that are working with stakeholders from commercial businesses, government agencies, industry, research organisations, software companies, technology providers and European universities. Together, they are creating a common technology vision while developing a strategic research agenda that shows how language technology applications can address any research gaps by 2020.
Natural language is one of the most important means of human communication. It enables us to express our will, to exchange thoughts and to document our knowledge in written sources. Owing to its substantial role in many facets of human life, technology for automatically analyzing and processing natural language has recently become increasingly important. In fact, natural language processing tools have paved the way for entirely new business opportunities. The goal of this book is to facilitate the automatic analysis of natural language in process models and to employ this analysis for assisting process model stakeholders. Therefore, a technique is defined that automatically recognizes and annotates process model element labels. In addition, this technique is leveraged to support organizations in effectively utilizing their process models in various ways. The book is organized into seven chapters. It starts with an overview of business process management and linguistics and continues with conceptual contributions on parsing and annotating process model elements, with the detection and correction of process model guideline violations, with the generation of natural language from process models and finally ends with the derivation of service candidates from process models.
Researchers in many disciplines have been concerned with modeling textual data in order to account for texts as the primary information unit of written communication. The book "Modelling, Learning and Processing of Text-Technological Data Structures" deals with this challenging information unit. It focuses on theoretical foundations of representing natural language texts as well as on concrete operations of automatic text processing. Following this integrated approach, the present volume includes contributions to a wide range of topics in the context of processing of textual data. This relates to the learning of ontologies from natural language texts, the annotation and automatic parsing of texts as well as the detection and tracking of topics in texts and hypertexts. In this way, the book brings together a wide range of approaches to procedural aspects of text technology as an emerging scientific discipline.
This book explores how and in what ways the relationship between language, mind and computation can be conceived of, given that a number of foundational assumptions about this relationship remain unacknowledged in mainstream linguistic theory, yet continue to be the basis of theoretical developments and empirical advances. |
![]() ![]() You may like...
Turkish Natural Language Processing
Kemal Oflazer, Murat Saraclar
Hardcover
Intelligent Music Information Systems…
Jialie Shen, John Shepherd, …
Hardcover
R4,980
Discovery Miles 49 800
Sounds of the Pandemic - Accounts…
Maurizio Agamennone, Daniele Palma, …
Paperback
R1,390
Discovery Miles 13 900
|