![]() |
![]() |
Your cart is empty |
||
Books > Language & Literature > Language & linguistics > Computational linguistics
This book provides information on digital audio watermarking, its applications, and its evaluation for copyright protection of audio signals - both basic and advanced. The author covers various advanced digital audio watermarking algorithms that can be used for copyright protection of audio signals. These algorithms are implemented using hybridization of advanced signal processing transforms such as fast discrete curvelet transform (FDCuT), redundant discrete wavelet transform (RDWT), and another signal processing transform such as discrete cosine transform (DCT). In these algorithms, Arnold scrambling is used to enhance the security of the watermark logo. This book is divided in to three portions: basic audio watermarking and its classification, audio watermarking algorithms, and audio watermarking algorithms using advance signal transforms. The book also covers optimization based audio watermarking. Describes basic of digital audio watermarking and its applications, including evaluation parameters for digital audio watermarking algorithms; Provides audio watermarking algorithms using advanced signal transformations; Provides optimization based audio watermarking algorithms.
This book constitutes the refereed proceedings of the 16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, held in Hanoi, Vietnam, in October 2019. The 28 full papers and 14 short papers presented were carefully reviewed and selected from 70 submissions. The papers are organized in topical sections on text summarization; relation and word embedding; machine translation; text classification; web analyzing; question and answering, dialog analyzing; speech and emotion analyzing; parsing and segmentation; information extraction; and grammar error and plagiarism detection.
Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental. The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drives the field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.
This book constitutes the refereed proceedings of the 14th
International Conference on Formal Grammar 2009, held in Bordeaux,
France, in July 2009.
The aim of this book and its accompanying audio files is to make accessible a corpus of 40 authentic job interviews conducted in English. The recordings and transcriptions of the interviews published here may be used by students, teachers and researchers alike for linguistic analyses of spoken discourse and as authentic material for language learning in the classroom. The book includes an introduction to corpus linguistics, offering insight into different kinds of corpora and discussing their main characteristics. Furthermore, major features of the discourse genre job interview are outlined and detailed information is given concerning the job interview corpus published in this book.
This book explains speech enhancement in the Fractional Fourier Transform (FRFT) domain and investigates the use of different FRFT algorithms in both single channel and multi-channel enhancement systems, which has proven to be an ideal time frequency analysis tool in many speech signal processing applications. The authors discuss the complexities involved in the highly non- stationary signal processing and the concepts of FRFT for speech enhancement applications. The book explains the fundamentals of FRFT as well as its implementation in speech enhancement. Theories of different FRFT methods are also discussed. The book lets readers understand the new fractional domains to prepare them to develop new algorithms. A comprehensive literature survey regarding the topic is also made available to the reader.
In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.
Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
This book constitutes the proceedings of the 14th International Conference on Computational Processing of the Portuguese Language, PROPOR 2020, held in Evora, Portugal, in March 2020. The 36 full papers presented together with 5 short papers were carefully reviewed and selected from 70 submissions. They are grouped in topical sections on speech processing; resources and evaluation; natural language processing applications; semantics; natural language processing tasks; and multilinguality.
This book introduces a novel type of expert finder system that can determine the knowledge that specific users within a community hold, using explicit and implicit data sources to do so. Further, it details how this is accomplished by combining granular computing, natural language processing and a set of metrics that it introduces to measure and compare candidates' suitability. The book describes profiling techniques that can be used to assess knowledge requirements on the basis of a given problem statement or question, so as to ensure that only the most suitable candidates are recommended. The book brings together findings from natural language processing, artificial intelligence and big data, which it subsequently applies to the context of expert finder systems. Accordingly, it will appeal to researchers, developers and innovators alike.
This book focuses on information literacy for the younger generation of learners and library readers. It is divided into four sections: 1. Information Literacy for Life; 2. Searching Strategies, Disciplines and Special Topics; 3. Information Literacy Tools for Evaluating and Utilizing Resources; 4. Assessment of Learning Outcomes. Written by librarians with wide experience in research and services, and a strong academic background in disciplines such as the humanities, social sciences, information technology, and library science, this valuable reference resource combines both theory and practice. In today's ever-changing era of information, it offers students of library and information studies insights into information literacy as well as learning tips they can use for life.
Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG). This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.
First published a decade ago, "CJKV Information Processing" quickly became the unsurpassed source of information on processing text in Chinese, Japanese, Korean, and Vietnamese. The book has now been thoroughly updated to provide web and application developers with the latest techniques and tools for disseminating information directly to audiences in East Asia. This new second edition reflects the considerable impact that Unicode, XML, OpenType, and newer operating systems such as Windows XP, Vista, Mac OS X, and Linux have had on East Asian text processing in recent years. Written by its original author, Ken Lunde, a Senior Computer Scientist in CJKV Type Development at Adobe Systems, this book will help you: learn about CJKV writing systems and scripts, and their transliteration methods; explore recent trends and developments in character sets and encodings, particularly Unicode; examine the world of typography, specifically how CJKV text is laid out on a page; learn information processing techniques, such as code conversion algorithms and how to apply them using different programming languages; process CJKV text using different platforms, text editors, and word processors; become more informed about CJKV dictionaries, dictionary software, and machine translation software and services; and, manage CJKV content and presentation when publishing in print or for the Web And much more. Internationalizing and localizing applications is paramount in today's global market - especially for audiences in East Asia, the fastest-growing segment of the computing world. "CJKV Information Processing" will help you understand how to develop web and other applications effectively in a field that many find difficult to master.
The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano--and most other languages--remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic.
Language, apart from its cultural and social dimension, has a scientific side that is connected not only to the study of 'grammar' in a more or less traditional sense, but also to disciplines like mathematics, physics, chemistry and biology. This book explores developments in linguistic theory, looking in particular at the theory of generative grammar from the perspective of the natural sciences. It highlights the complex and dynamic nature of language, suggesting that a comprehensive and full understanding of such a species-specific property will only be achieved through interdisciplinary work.
This book introduces audio watermarking methods in transform domain based on matrix decomposition for copyright protection. Chapter 1 discusses the application and properties of digital watermarking. Chapter 2 proposes a blind lifting wavelet transform (LWT) based watermarking method using fast Walsh Hadamard transform (FWHT) and singular value decomposition (SVD) for audio copyright protection. Chapter 3 presents a blind audio watermarking method based on LWT and QR decomposition (QRD) for audio copyright protection. Chapter 4 introduces an audio watermarking algorithm based on FWHT and LU decomposition (LUD). Chapter 5 proposes an audio watermarking method based on LWT and Schur decomposition (SD). Chapter 6 explains in details on the challenges and future trends of audio watermarking in various application areas. Introduces audio watermarking methods for copyright protection and ownership protection; Describes watermarking methods with encryption and decryption that provide excellent performance in terms of imperceptibility, robustness, and data payload; Discusses in details on the challenges and future research direction of audio watermarking in various application areas.
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
The question of what types of data and evidence can be used is one of the most important topics in linguistics. This book is the first to comprehensively present the methodological problems associated with linguistic data and evidence. Its originality is twofold. First, the authors' approach accounts for a series of unexplained characteristics of linguistic theorising: the uncertainty and diversity of data, the role of evidence in the evaluation of hypotheses, and the problem solving strategies, as well as the emergence and resolution of inconsistencies. Second, the findings are obtained by the application of a new model of plausible argumentation which is also of relevance from a general argumentation theoretical point of view. All concepts and theses are systematically introduced and illustrated by a number of examples from different linguistic theories, and a detailed case-study section shows how the proposed model can be applied to specific linguistic problems.
This book presents a statistical parametric speech synthesis (SPSS) framework for developing a speech synthesis system where the desired speech is generated from the parameters of vocal tract and excitation source. Throughout the book, the authors discuss novel source modeling techniques to enhance the naturalness and overall intelligibility of the SPSS system. This book provides several important methods and models for generating the excitation source parameters for enhancing the overall quality of synthesized speech. The contents of the book are useful for both researchers and system developers. For researchers, the book is useful for knowing the current state-of-the-art excitation source models for SPSS and further refining the source models to incorporate the realistic semantics present in the text. For system developers, the book is useful to integrate the sophisticated excitation source models mentioned to the latest models of mobile/smart phones.
This book applies formal language and automata theory in the context of Tibetan computational linguistics; further, it constructs a Tibetan-spelling formal grammar system that generates a Tibetan-spelling formal language group, and an automata group that can recognize the language group. In addition, it investigates the application technologies of Tibetan-spelling formal language and automata. Given its creative and original approach, the book offers a valuable reference guide for researchers, teachers and graduate students in the field of computational linguistics.
Argumentation mining is an application of natural language processing (NLP) that emerged a few years ago and has recently enjoyed considerable popularity, as demonstrated by a series of international workshops and by a rising number of publications at the major conferences and journals of the field. Its goals are to identify argumentation in text or dialogue; to construct representations of the constellation of claims, supporting and attacking moves (in different levels of detail); and to characterize the patterns of reasoning that appear to license the argumentation. Furthermore, recent work also addresses the difficult tasks of evaluating the persuasiveness and quality of arguments. Some of the linguistic genres that are being studied include legal text, student essays, political discourse and debate, newspaper editorials, scientific writing, and others. The book starts with a discussion of the linguistic perspective, characteristics of argumentative language, and their relationship to certain other notions such as subjectivity. Besides the connection to linguistics, argumentation has for a long time been a topic in Artificial Intelligence, where the focus is on devising adequate representations and reasoning formalisms that capture the properties of argumentative exchange. It is generally very difficult to connect the two realms of reasoning and text analysis, but we are convinced that it should be attempted in the long term, and therefore we also touch upon some fundamentals of reasoning approaches. Then the book turns to its focus, the computational side of mining argumentation in text. We first introduce a number of annotated corpora that have been used in the research. From the NLP perspective, argumentation mining shares subtasks with research fields such as subjectivity and sentiment analysis, semantic relation extraction, and discourse parsing. Therefore, many technical approaches are being borrowed from those (and other) fields. We break argumentation mining into a series of subtasks, starting with the preparatory steps of classifying text as argumentative (or not) and segmenting it into elementary units. Then, central steps are the automatic identification of claims, and finding statements that support or oppose the claim. For certain applications, it is also of interest to compute a full structure of an argumentative constellation of statements. Next, we discuss a few steps that try to 'dig deeper': to infer the underlying reasoning pattern for a textual argument, to reconstruct unstated premises (so-called 'enthymemes'), and to evaluate the quality of the argumentation. We also take a brief look at 'the other side' of mining, i.e., the generation or synthesis of argumentative text. The book finishes with a summary of the argumentation mining tasks, a sketch of potential applications, and a--necessarily subjective--outlook for the field.
Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples. In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.
Now in its second edition, this volume provides an up to date, accessible, yet authoritative introduction to feedback on second language writing for upper undergraduate and postgraduate students, teachers and researchers in TESOL, applied linguistics, composition studies and English for academic purposes (EAP). Chapters written by leading experts emphasise the potential that feedback has for helping to create a supportive teaching environment, for conveying and modelling ideas about good writing, for developing the ways students talk about writing, and for mediating the relationship between students' wider cultural and social worlds and their growing familiarity with new literacy practices. In addition to updated chapters from the first edition, this edition includes new chapters which focus on new and developing areas of feedback research including student engagement and participation with feedback, the links between SLA and feedback research, automated computer feedback and the use by students of internet resources and social media as feedback resources.
This updated book expands upon prosody for recognition applications of speech processing. It includes importance of prosody for speech processing applications; builds on why prosody needs to be incorporated in speech processing applications; and presents methods for extraction and representation of prosody for applications such as speaker recognition, language recognition and speech recognition. The updated book also includes information on the significance of prosody for emotion recognition and various prosody-based approaches for automatic emotion recognition from speech.
What is the lexicon, what does it contain, and how is it structured? What principles determine the functioning of the lexicon as a component of natural language grammar? What role does lexical information play in linguistic theory? This accessible introduction aims to answer these questions, and explores the relation of the lexicon to grammar as a whole. It includes a critical overview of major theoretical frameworks, and puts forward a unified treatment of lexical structure and design. The text can be used for introductory and advanced courses, and for courses that touch upon different aspects of the lexicon, such as lexical semantics, lexicography, syntax, general linguistics, computational lexicology and ontology design. The book provides students with a set of tools which will enable them to work with lexical data for all kinds of purposes, including an abundance of exercises and in-class activities designed to ensure that students are actively engaged with the content and effectively acquire the necessary knowledge and skills they need. |
![]() ![]() You may like...
Advances in 3D Image and Graphics…
Roumen Kountchev, Srikanta Patnaik, …
Hardcover
R5,975
Discovery Miles 59 750
DSP-Based Electromechanical Motion…
Hamid A. Toliyat, Steven G. Campbell
Hardcover
R6,883
Discovery Miles 68 830
Ultra Low Power ECG Processing System…
Temesghen Tekeste Habte, Hani Saleh, …
Hardcover
R1,574
Discovery Miles 15 740
Financial Restructuring and Reform in…
James R Barth, Zhongfei Zhou
Hardcover
R8,002
Discovery Miles 80 020
Illustrating Finance Policy with…
Nicholas L. Georgakopoulos
Hardcover
R2,740
Discovery Miles 27 400
Numerical Mathematics and Advanced…
Bulent Karasoezen, Murat Manguoglu, …
Hardcover
R6,011
Discovery Miles 60 110
Math for the Digital Factory
Luca Ghezzi, Dietmar Homberg, …
Hardcover
R4,455
Discovery Miles 44 550
Applied Soft Computing and Embedded…
Mangey Ram, Rupendra Kumar Pachauri, …
Hardcover
R4,571
Discovery Miles 45 710
|