Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Technology: general issues > Technical design > Computer aided design (CAD)
The Information and communication technology (ICT) industry is said to account for 2% of the worldwide carbon emissions - a fraction that continues to grow with the relentless push for more and more sophisticated computing equipment, c- munications infrastructure, and mobile devices. While computers evolved in the directionofhigherandhigherperformanceformostofthelatterhalfofthe20thc- tury, the late 1990's and early 2000'ssaw a new emergingfundamentalconcern that has begun to shape our day-to-day thinking in system design - power dissipation. As we elaborate in Chapter 1, a variety of factors colluded to raise power-ef?ciency as a ?rst class design concern in the designer's mind, with profound consequences all over the ?eld: semiconductor process design, circuit design, design automation tools, system and application software, all the way to large data centers. Power-ef?cient System Design originated from a desire to capture and highlight the exciting developments in the rapidly evolving ?eld of power and energy op- mization in electronic and computer based systems. Tremendous progress has been made in the last two decades, and the topic continues to be a fascinating research area. To develop a clearer focus, we have concentrated on the relatively higher level of design abstraction that is loosely called the system level. In addition to the ext- sive coverage of traditional power reduction targets such as CPU and memory, the book is distinguished by detailed coverage of relatively modern power optimization ideas focussing on components such as compilers, operating systems, servers, data centers, and graphics processors.
Providing a step-by-step guide for the implementation of virtual manufacturing using Creo Parametric software (formerly known as Pro-Engineer), this book creates an engaging and interactive learning experience for manufacturing engineering students. Featuring graphic illustrations of simulation processes and operations, and written in accessible English to promote user-friendliness, the book covers key topics in the field including: the engraving machining process, face milling, profile milling, surface milling, volume rough milling, expert machining, electric discharge machining (EDM), and area turning using the lathe machining process. Maximising reader insights into how to simulate material removal processes, and how to generate cutter location data and G-codes data, this valuable resource equips undergraduate, postgraduate, BTech and HND students in the fields of manufacturing engineering, computer aided design (CAD) and computer aided engineering (CAE) with transferable skills and knowledge. This book is also intended for technicians, technologists and engineers new to Creo Parametric software.
This book describes the current state of the art for simulating paint shop applications, their advantages and limitations, as well as corresponding high-performance computing (HPC) methods utilized in this domain. The authors provide a comprehensive introduction to fluid simulations, corresponding optimization methods from the HPC domain, as well as industrial paint shop applications. They showcase how the complexity of these applications bring corresponding fluid simulation methods to their limits and how these shortcomings can be overcome by employing HPC methods. To that end, this book covers various optimization techniques for three individual fluid simulation techniques, namely grid-based methods, volumetric decomposition methods, and particle-based methods.
Computer-Aided Innovation (CAI) is emerging as a strategic domain of research and application to support enterprises throughout the overall innovation process. The 5.4 Working Group of IFIP aims at defining the scientific foundation of Computer Aided Innovation systems and at identifying state of the art and trends of CAI tools and methods. These Proceedings derive from the second Topical Session on Computer- Aided Innovation organized within the 20th World Computer Congress of IFIP. The goal of the Topical Session is to provide a survey of existing technologies and research activities in the field and to identify opportunities of integration of CAI with other PLM systems. According to the heterogeneous needs of innovation-related activities, the papers published in this volume are characterized by multidisciplinary contents and complementary perspectives and scopes. Such a richness of topics and disciplines will certainly contribute to the promotion of fruitful new collaborations and synergies within the IFIP community. Gaetano Cascini th Florence, April 30 20 08 CAI Topical Session Organization The IFIP Topical Session on Computer-Aided Innovation (CAI) is a co-located conference organized under the auspices of the IFIP World Computer Congress (WCC) 2008 in Milano, Italy Gaetano Cascini CAI Program Committee Chair [email protected]
The present text sets itself in relief to other titles on the subject in that it addresses the means and methodologies versus a narrow specific-task oriented approach. Concepts and their developments which evolved to meet the changing needs of applications are addressed. This approach provides the reader with a general tool-box to apply to their specific needs. Two important tools are presented: dimensional analysis and the similarity analysis methods. The fundamental point of view, enabling one to sort all models, is that of information flux between a model and an original expressed by the similarity and abstraction Each chapter includes original examples and applications. In this respect, the models can be divided into several groups. The following models are dealt with separately by chapter; mathematical and physical models, physical analogues, deterministic, stochastic, and cybernetic computer models. The mathematical models are divided into asymptotic and phenomenological models. The phenomenological models, which can also be called experimental, are usually the result of an experiment on an complex object or process. The variable dimensionless quantities contain information about the real state of boundary conditions, parameter (non-linearity) changes, and other factors. With satisfactory measurement accuracy and experimental strategy, such models are highly credible and can be used, for example in control systems.
The papers in this volume represent research and development in the field of artificial intelligence. This volume demonstrates both the breadth and depth of artificial intelligence in design and points the way forward for our understanding of design as a process and for the development of advanced computer-based tools to aid designers. The paper describes advances in both theory and applications. This volume should be of particular interest to researchers, developers and users of advanced computer systems in design.
Technology computer-aided design, or TCAD, is critical to today's semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.
One of the leading causes of automobile accidents is the slow reaction of the driver while responding to a hazardous situation. State-of-the-art wireless electronics can automate several driving functions, leading to significant reduction in human error and improvement in vehicle safety. With continuous transistor scaling, silicon fabrication technology now has the potential to substantially reduce the cost of automotive radar sensors. This book bridges an existing gap between information available on dependable system/architecture design and circuit design. It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors. System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.
The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult, traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce, bio- formatics, computer security, Web intelligence, intelligent learning database systems, ?nance, marketing, healthcare, telecommunications, andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However, the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exc
As diverse as tomorrow's society constituent groups may be, they will share the common requirements that their life should become safer and healthier, offering higher levels of effectiveness, communication and personal freedom. The key common part to all potential solutions fulfilling these requirements is wearable embedded systems, with longer periods of autonomy, offering wider functionality, more communication possibilities and increased computational power. As electronic and information systems on the human body, their role is to collect relevant physiological information, and to interface between humans and local and/or global information systems. Within this context, there is an increasing need for applications in diverse fields, from health to rescue to sport and even remote activities in space, to have real-time access to vital signs and other behavioral parameters for personalized healthcare, rescue operation planning, etc. This book's coverage will span all scientific and technological areas that define wearable monitoring systems, including sensors, signal processing, energy, system integration, communications, and user interfaces. Six case studies will be used to illustrate the principles and practices introduced.
By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. Special features include an emphasis on the interplay of ideas from algebra and geometry and their historical origins, detailed algorithm descriptions, and many figures and worked examples. The book may appeal, in whole or in part, to mathematicians, computer scientists, and engineers.
Cognitive Informatics (CI) is the science of cognitive information processing and its applications in cognitive computing. CI is a transdisciplinary enquiry of computer science, information science, cognitive science, and intelligence science that investigates into the internal information processing mechanisms and processes of the brain. Advances and engineering applications of CI have led to the emergence of cognitive computing and the development of Cognitive Computers (CCs) that reason and learn. As initiated by Yingxu Wang and his colleagues, CC has emerged and developed based on the transdisciplinary research in CI, abstract intelligence (aI), and denotational mathematics after the inauguration of the series of IEEE International Conference on Cognitive Informatics since 2002 at Univ. of Calgary, Stanford Univ., and Tsinghua Univ., etc. This volume in LNCS (subseries of Computational Intelligence), LNCI 323, edited by Y. Wang, D. Zhang, and W. Kinsner, presents the latest development in cognitive informatics and cognitive computing. The book focuses on the explanation of cognitive models of the brain, the layered reference model of the brain, the fundamental mechanisms of abstract intelligence, and the implementation of computational intelligence by autonomous inference and learning engines based on CCs.
The textbook provides both beginner and experienced CAD users with the math behind the CAD. The geometry tools introduced here help the reader exploit commercial CAD software to its fullest extent. In fact, the book enables the reader to go beyond what CAD software packages offer in their menus. Chapter 1 summarizes the basic Linear and Vector Algebra pertinent to vectors in 3D, with some novelties: the 2D form of the vector product and the manipulation of "larger" matrices and vectors by means of block-partitioning of larger arrays. In chapter 2 the relations among points, lines and curves in the plane are revised accordingly; the difference between curves representing functions and their geometric counterparts is emphasized. Geometric objects in 3D, namely, points, planes, lines and surfaces are the subject of chapter 3; of the latter, only quadrics are studied, to keep the discussion at an elementary level, but the interested reader is guided to the literature on splines. The concept of affine transformations, at the core of CAD software, is introduced in chapter 4, which includes applications of these transformations to the synthesis of curves and surfaces that would be extremely cumbersome to produce otherwise. The book, catering to various disciplines such as engineering, graphic design, animation and architecture, is kept discipline-independent, while including examples of interest to the various disciplines. Furthermore, the book can be an invaluable complement to undergraduate lectures on CAD.
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms." The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
As Moore 's law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallelization of the computation and 3D integration technologies lead to distributed memory architectures.This book describes recent research that addresses urgent challenges in many-core architectures and application mapping. It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies.
This book presents a new set of embedded system design techniques called multidimensional data flow, which combine the various benefits offered by existing methodologies such as block-based system design, high-level simulation, system analysis and polyhedral optimization. It describes a novel architecture for efficient and flexible high-speed communication in hardware that can be used both in manual and automatic system design and that offers various design alternatives, balancing achievable throughput with required hardware size. This book demonstrates multidimensional data flow by showing its potential for modeling, analysis, and synthesis of complex image processing applications. These applications are presented in terms of their fundamental properties and resulting design constraints. Coverage includes a discussion of how far the latter can be met better by multidimensional data flow than alternative approaches. Based on these results, the book explains the principles of fine-grained system level analysis and high-speed communication synthesis. Additionally, an extensive review of related techniques is given in order to show their relation to multidimensional data flow.
Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space - a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while Solid Works or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free form surface modeling; modeling of product assemblies following bottom-up and top-down principles; and the presentation of a product in accordance with the rules of technical documentation. This book, which includes more than 500 figures, will be ideal for students wishing to gain a sound grasp of space modeling techniques. Academics and professionals will find it to be an excellent teaching and research aid, and an easy-to-use guide.
Human lives are getting increasingly entangled with technology, especially comp- ing and electronics. At each step we take, especially in a developing world, we are dependent on various gadgets such as cell phones, handheld PDAs, netbooks, me- cal prosthetic devices, and medical measurement devices (e.g., blood pressure m- itors, glucometers). Two important design constraints for such consumer electronics are their form factor and battery life. This translates to the requirements of reduction in the die area and reduced power consumption for the semiconductor chips that go inside these gadgets. Performance is also important, as increasingly sophisticated applications run on these devices, and many of them require fast response time. The form factor of such electronics goods depends not only on the overall area of the chips inside them but also on the packaging, which depends on thermal ch- acteristics. Thermal characteristics in turn depend on peak power signature of the chips. As a result, while the overall energy usage reduction increases battery life, peak power reduction in?uences the form factor. One more important aspect of these electronic equipments is that every 6 months or so, a newer feature needs to be added to keep ahead of the market competition, and hence new designs have to be completed with these new features, better form factor, battery life, and performance every few months. This extreme pressure on the time to market is another force that drives the innovations in design automation of semiconductor chips.
Mixed Reality is moving out of the research-labs into our daily lives. It plays an increasing role in architecture, design and construction. The combination of digital content with reality creates an exciting synergy that sets out to enhance engagement within architectural design and construction. State-of-the-art research projects on theories and applications within Mixed Reality are presented by leading researchers covering topics in architecture, design collaboration, construction and education. They discuss current projects and offer insight into the next wave of Mixed Reality possibilities.
This book presents the technical program of the International Embedded Systems Symposium (IESS) 2009. Timely topics, techniques and trends in embedded system design are covered by the chapters in this volume, including modelling, simulation, verification, test, scheduling, platforms and processors. Particular emphasis is paid to automotive systems and wireless sensor networks. Sets of actual case studies in the area of embedded system design are also included. Over recent years, embedded systems have gained an enormous amount of proce- ing power and functionality and now enter numerous application areas, due to the fact that many of the formerly external components can now be integrated into a single System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost of embedded systems. As a unique technology, the design of embedded systems is an essential element of many innovations. Embedded systems meet their performance goals, including real-time constraints, through a combination of special-purpose hardware and software components tailored to the system requirements. Both the development of new features and the reuse of existing intellectual property components are essential to keeping up with ever more demanding customer requirements. Furthermore, design complexities are steadily growing with an increasing number of components that have to cooperate properly. Embedded system designers have to cope with multiple goals and constraints simul- neously, including timing, power, reliability, dependability, maintenance, packaging and, last but not least, price.
Innovation in Product Design gives an overview of the research fields and achievements in the development of methods and tools for product design and innovation. It presents contributions from experts in many different fields covering a variety of research topics related to product development and innovation. Product lifecycle management, knowledge management, product customization, topological optimization, product virtualization, systematic innovation, virtual humans, design and engineering, and rapid prototyping are the key research areas described in the book. It also details successful case studies developed with industrial companies. Innovation in Product Design is written for academic researchers, graduate students and professionals in product development disciplines who are interested in understanding how novel methodologies and technologies can make the product development process more efficient.
This book details the state-of-the-art of research and development in design computing and design cognition. It features more than 35 papers that were presented at the Sixth International Conference on Design Computing and Cognition, DCC'14, held at University College, London, UK. Inside, readers will find the work of expert researchers and practitioners that explores both advances in theory and application as well as demonstrates the depth and breadth of design computing and design cognition. This interdisciplinary coverage, which includes material from international research groups, examines design synthesis, design cognition, design creativity, design processes, design theory, design grammars, design support and design ideation. Overall, the papers provide a bridge between design computing and design cognition. The confluence of these two fields continues to build the foundation for further advances and leads to an increased understanding of design as an activity whose influence continues to spread. As a result, the book will be of particular interest to researchers, developers and users of advanced computation in design and those who need to gain a better understanding of designing that can be obtained through empirical studies.
Design exibility and power consumption in addition to the cost, have always been the most important issues in design of integrated circuits (ICs), and are the main concerns of this research, as well. Energy Consumptions: Power dissipation (P ) and energy consumption are - diss pecially importantwhen there is a limited amountof power budgetor limited source of energy. Very common examples are portable systems where the battery life time depends on system power consumption. Many different techniques have been - veloped to reduce or manage the circuit power consumption in this type of systems. Ultra-low power (ULP) applications are another examples where power dissipation is the primary design issue. In such applications, the power budget is so restricted that very special circuit and system level design techniquesare needed to satisfy the requirements. Circuits employed in applications such as wireless sensor networks (WSN), wearable battery powered systems [1], and implantable circuits for biol- ical applications need to consume very low amount of power such that the entire system can survive for a very long time without the need for changingor recharging battery[2-4]. Using newpowersupplytechniquessuchas energyharvesting[5]and printable batteries [6], is another reason for reducing power dissipation. Devel- ing special design techniques for implementing low power circuits [7-9], as well as dynamic power management (DPM) schemes [10] are the two main approaches to control the system power consumption. Design Flexibility: Design exibility is the other important issue in modern in- grated systems.
This book introduces the basic structure, modeling methods, numerical calculation processes, post-processing, and system functions of MatDEM, which applies the basic principles and algorithm of the discrete element method. The discrete element method can effectively simulate the discontinuity, inhomogeneity, and large deformation damage of rock and soil. It is widely used in both research and industry. Based on the innovative matrix discrete element computing method, the author developed the high-performance discrete element software MatDEM from scratch, which can handle millions of elements in discrete element numerical simulations. This book also presents several examples of applications in geological and geotechnical engineering, including basic geotechnical engineering problems, discrete element tests, three dimensional landslides, and dynamic and multi-field coupling functions. Teaching videos and the relevant software can be accessed on the MATDEM website (http://matdem.com). The book serves as a useful reference for research and engineering staff, undergraduates, and postgraduates who work in the fields of geology, geotechnical, water conservancy, civil engineering, mining, and physics.
This book presents novel research techniques, algorithms, methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. |
You may like...
Solid Edge 2022 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R1,973
Discovery Miles 19 730
Computer Architecture in Industrial…
Lulu Wang, Liandong Yu
Hardcover
SolidWorks 2022 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R1,987
Discovery Miles 19 870
SolidWorks Simulation 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,719
Discovery Miles 17 190
Materials and Contact Characterisation X
Santiago Hernandez, Jeff De Hossen
Hardcover
R2,659
Discovery Miles 26 590
Creo Parametric 8.0 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R2,189
Discovery Miles 21 890
Creo Parametric 9.0 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R2,261
Discovery Miles 22 610
|