![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
The problem of robotic and virtual interaction with physical objects has been the subject of research for many years in both the robotic manipulation and haptics communities. Both communities have focused much attention on human touch-based perception and manipulation, modelling contact between real or virtual hands and objects, or mechanism design. However, as a whole, these problems have not yet been addressed from a unified perspective. This edited book is the outcome of a well-attended workshop which brought together leading scholars from various branches of the robotics, virtual-reality, and human studies communities during the 2004 IEEE International Conference on Robotics and Automation. It covers some of the most challenging problems on the forefront of today's research on physical interaction with real and virtual objects, with special emphasis on modelling contacts between objects, grasp planning algorithms, haptic perception, and advanced design of hands, devices and interfaces.
This book is the sixth in the ChDL (Chip Design Languages) series. Year 2004 has seen many efforts in the ?eld of electronic and mixed technology circuit design languages. The industry has recognized the need for system level design as a way to enable the design of the next generation of emb- ded systems. This is demonstrated by the "ESL Now!" campaign that many companies are promoting. This year has also seen many interesting st- dardization efforts for system level design, such as SystemC TLM (http: //www. systemc. org/) for transactional level modeling with SystemC, AU- TOSAR (http://www. autosar. org/) for automotive embedded system - plications, or SPIRIT (http://www. spiritconsortium. org/) for IP int- change. In the ?eld of modeling languages, the Model Driven Architecture of the OMG (http://www. omg. org/mda/) has given rise to model driven en- neering, which is a more general way of software engineering based on model transformations. As embedded systems are more and more programmable and as the design abstraction level rises, model driven methodologies are also c- sidered for electronic system level design. In this context, the OMG has - cently published a call for propositions for a UML 2. 0 pro?le for Modeling and Analysis of Real-Time and Embedded systems (MARTE). The constraints on the design process of these next generation embedded systems are considerable: Real-time, power consumption, complexity, mixed technology integration, correctness, time to market, cost, ...
I want to express my sincere thanks to all authors who submitted research papers to support the Third IFIP International Conference on Computer and Computing Te- nologies in Agriculture and the Third Symposium on Development of Rural Infor- tion (CCTA 2009) held in China, during October 14-17, 2009. This conference was hosted by the CICTA (EU-China Centre for Information & Communication Technologies, China Agricultural University), China National En- neering Research Center for Information Technology in Agriculture, Asian Conf- ence on Precision Agriculture, International Federation for Information Processing, Chinese Society of Agricultural Engineering, Beijing Society for Information Te- nology in Agriculture, and the Chinese Society for Agricultural Machinery. The pla- num sponsor includes the Ministry of Science and Technology of China, Ministry of Agriculture of China, Ministry of Education of China, among others. The CICTA (EU-China Centre for Information & Communication Technologies, China Agricultural University) focuses on research and development of advanced and practical technologies applied in agriculture and on promoting international communi- tion and cooperation. It has successfully held three International Conferences on C- puter and Computing Technologies in Agriculture, namely CCTA 2007, CCTA 2008 and CCTA 2009. Sustainable agriculture is the focus of the whole world currently, and therefore the application of information technology in agriculture is becoming more and more - portant. 'Informatized agriculture' has been sought by many countries recently in order to scientifically manage agriculture to achieve low costs and high incomes.
Recent trends in the fashion market (including an impressive increase in the number of new collections, product assortments and variants, and the emerging mass-customization model) dictate the need for a new approach. "Transforming Clothing Production into a Demand-Driven, Knowledge-Based, High-Tech Industry" discusses the ramifications of such an approach, which must lead to a drastic shortening of the whole cycle from conception to production and retail, as well as a shift from a labor-intensive to a technology- and knowledge-intensive clothing manufacturing industry. "Transforming Clothing Production into a Demand-Driven, Knowledge-Based, High-Tech Industry" is a collection of short papers from prominent researchers involved with the LEAPFROG (Leadership for European Apparel Production From Research along Original Guidelines) initiative. LEAPFROG proposes a revolutionary industrial paradigm based on research results in scientific-technological fields.
This book constitutes the thoroughly refereed proceedings of the First International Conference on Simulation of Urban Mobility, SUMO 2013, held in Berlin, Germany, in May 2013. The 12 revised full papers presented tin this book were carefully selected and reviewed from 22 submissions. The papers are organized in two topical sections: models and technical innovations and applications and surveys.
Modeling of photovoltaic sources and their emulation by means of power electronic converters are challenging issues. The former is tied to the knowledge of the electrical behavior of the PV generator; the latter consists in its realization by a suitable power amplifier. This extensive introduction to the modeling of PV generators and their emulation by means of power electronic converters will aid in understanding and improving design and set up of new PV plants. The main benefit of reading Photovoltaic Sources is the ability to face the emulation of photovoltaic generators obtained by the design of a suitable equipment in which voltage and current are the same as in a real source. This is achieved according to the following steps: the source electrical behavior modeling, the power converter design, including its control, for the laboratory emulator. This approach allows the reader to cope with the creation of an indoor virtual photovoltaic plant, in which the environmental conditions can be imposed by the user, for testing real operation including maximum power point tracking, partial shading, control for the grid or load interfacing, etc. Photovoltaic Sources is intended to meet the demands of postgraduate level students, and should prove useful to professional engineers and researchers dealing with the problems associated with modeling and emulation of photovoltaic sources.
This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. The text focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines. Each chapter examines numerous algorithms, describing their design and analysis in an accessible manner, without sacrificing depth of coverage or mathematical rigor. Features: examines the problem of computing an hierarchical representation of the geometric description of each simulated object, as well as the simulated world; discusses the use of discrete and continuous collision detection to handle thin or fast-moving objects; describes the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts; presents techniques that can be used to dynamically simulate articulated rigid bodies; concludes each chapter with exercises.
Data driven methods have long been used in Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis and have more recently been introduced for dialogue management, spoken language understanding, and Natural Language Generation. Machine learning is now present "end-to-end" in Spoken Dialogue Systems (SDS). However, these techniques require data collection and annotation campaigns, which can be time-consuming and expensive, as well as dataset expansion by simulation. In this book, we provide an overview of the current state of the field and of recent advances, with a specific focus on adaptivity.
Computer languages and computer graphics have become the primary modes of human-computer interaction. This book provides a basic introduction to "Real and Virtual Environment" computer modelling. Graphics models are used to illustrate both the way computer languages are processed and also used to create computer models of graphic displays. Computer languages have been bootstrapped from machine code, to high-level languages such as Java, to animation scripting languages. Integrating graphic and computer models takes this support for programming, design and simulation work, one step further, allowing interactive computer graphic displays to be used to construct computer models of both real and virtual environment systems. The Java language is used to implement basic algorithms for language translation, and to generate graphic displays. It is also used to simulate the behaviour of a computer system, to explore the way programming and design-simulation environments can be put together.
This book contains the research on modeling bodies, cloth and character based adaptation performed during the last 3 years at MIRALab at the University of Geneva. More than ten researchers have worked together in order to reach a truly 3D Virtual Try On. What we mean by Virtual Try On is the possibility of anyone to give dimensions on her predefined body and obtain her own sized shape body, select a 3D cloth and see oneself animated in Real-Time, walking along a catwalk. Some systems exist today but are unable to adapt to body dimensions, have no real-time animation of body and clothes. A truly system on the web of Virtual Try On does not exist so far. This book is an attempt to explain how to build a 3D Virtual Try On system which is now very much in demand in the clothing industry. To describe this work, the book is divided into five chapters. The first chapter contains a brief historical background of general deformation methods. It ends with a section on the 3D human body scanner systems that are used both for rapid p- totyping and statistical analyses of the human body size variations.
This book includes extended and revised versions of a set of selected papers from the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2013) which was co-organized by the Reykjavik University (RU) and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). SIMULTECH 2013 was held in cooperation with the ACM SIGSIM - Special Interest Group (SIG) on SImulation and Modeling (SIM), Movimento Italiano Modellazione e Simulazione (MIMOS) and AIS Special Interest Group on Modeling and Simulation (AIS SIGMAS) and technically co-sponsored by the Society for Modeling & Simulation International (SCS), Liophant Simulation, Simulation Team and International Federation for Information Processing (IFIP). This proceedings brings together researchers, engineers, applied mathematicians and practitioners working in the advances and applications in the field of system simulation.
The storage yard is the operational and geographical centre of most seaport container terminals. Therefore, it is of particular importance for the whole terminal system and plays a major role for trade and transport flows. One of the latest trends in container-storage operations is the automated Rail-Mounted-Gantry-Crane system, which offers dense stacking, and offers low labour costs. This book investigates whether the operational performance of container terminals is influenced by the design of these storage systems and to what extent the performance is affected by the terminal's framework conditions, and discusses the strategies applied for container stacking and crane scheduling. A detailed simulation model is presented to compare the performance effects of alternative storage designs, innovative planning strategies, and other influencing factors. The results have useful implications future research, practical terminal planning and optimisation.
This book constitutes the proceedings of the 14th International Conference on Transport Systems Telematics, TST 2014, held in Katowice/Krakow and Ustron, Poland, in October 2014. The 49 papers included in this volume were carefully reviewed and selected from 125 submissions. The papers provide an overview of solutions being developed in the fields of transport telematics and intelligent transport systems.
Implicit objects have gained increasing importance in geometric modeling, visualisation, animation, and computer graphics, because their geometric properties provide a good alternative to traditional parametric objects. This book presents the mathematics, computational methods and data structures, as well as the algorithms needed to render implicit curves and surfaces, and shows how implicit objects can easily describe smooth, intricate, and articulatable shapes, and hence why they are being increasingly used in graphical applications. Divided into two parts, the first introduces the mathematics of implicit curves and surfaces, as well as the data structures suited to store their sampled or discrete approximations, and the second deals with different computational methods for sampling implicit curves and surfaces, with particular reference to how these are applied to functions in 2D and 3D spaces.
This book highlights recent developments in multidimensional data visualization, presenting both new methods and modifications on classic techniques. Throughout the book, various applications of multidimensional data visualization are presented including its uses in social sciences (economy, education, politics, psychology), environmetrics, and medicine (ophthalmology, sport medicine, pharmacology, sleep medicine). The book provides recent research results in optimization-based visualization. Evolutionary algorithms and a two-level optimization method, based on combinatorial optimization and quadratic programming, are analyzed in detail. The performance of these algorithms and the development of parallel versions are discussed. The utilization of new visualization techniques to improve the capabilies of artificial neural networks (self-organizing maps, feed-forward networks) is also discussed. The book includes over 100 detailed images presenting examples of the many different visualization techniques that the book presents. This book is intended for scientists and researchers in any field of study where complex and multidimensional data must be represented visually.
This book constitutes the refereed proceedings of the 18th International Conference on Distributed and Computer and Communication Networks, DCCN 2015, held in Moscow, Russia, in October 2015. The 38 revised full papers presented were carefully reviewed and selected from 94 submissions. The papers cover the following topics: computer and communication networks architecture optimization; control in computer and communication networks; performance and QoS evaluation in wireless networks; modeling and simulation of network protocols; queuing and reliability theory; wireless IEEE 802.11, IEEE 802.15, IEEE 802.16, and UMTS (LTE) networks; FRID technology and its application in intellectual transportation networks; protocols design (MAC, Routing) for centimeter and millimeter wave mesh networks; internet and web applications and services; application integration in distributed information systems; big data in communication networks.
The finite element method is often used for numerical computation in the applied sciences. It makes a major contribution to the range of numerical methods used in the simulation of systems and irregular domains, and its importance today has made it an important subject of study for all engineering students. While treatments of the method itself can be found in many traditional finite element books, Finite Element Modeling for Materials Engineers Using MATLAB (R) combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes. Finite Element Modeling for Materials Engineers Using MATLAB (R) covers such topics as: developing a weak formulation as a prelude to obtaining the finite element equation, interpolation functions, derivation of elemental equations, and use of the Partial Differential Equation Toolbox (TM). Exercises are given based on each example and m-files based on the examples are freely available to readers online. Researchers, advanced undergraduate and postgraduate students, and practitioners in the fields of materials and metallurgy will find Finite Element Modeling for Materials Engineers Using MATLAB (R) a useful guide to using MATLAB for engineering analysis and decision-making.
A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world's leading groups in the area of Bayesian identification, control, and decision making.
Growth in the pharmaceutical market has slowed down - almost to a standstill. One reason is that governments and other payers are cutting costs in a faltering world economy. But a more fundamental problem is the failure of major companies to discover, develop and market new drugs. Major drugs losing patent protection or being withdrawn from the market are simply not being replaced by new therapies - the pharmaceutical market model is no longer functioning effectively and most pharmaceutical companies are failing to produce the innovation needed for success. This multi-authored new book looks at a vital strategy which can bring innovation to a market in need of new ideas and new products: Systems Biology (SB). Modeling is a significant task of systems biology. SB aims to develop and use efficient algorithms, data structures, visualization and communication tools to orchestrate the integration of large quantities of biological data with the goal of computer modeling. It involves the use of computer simulations of biological systems, such as the networks of metabolites comprise signal transduction pathways and gene regulatory networks to both analyze and visualize the complex connections of these cellular processes. SB involves a series of operational protocols used for performing research, namely a cycle composed of theoretical, analytic or computational modeling to propose specific testable hypotheses about a biological system, experimental validation, and then using the newly acquired quantitative description of cells or cell processes to refine the computational model or theory.
This book provides readers with a solid set of diversified and essential tools for the theoretical modeling and control of complex robotic systems, as well as for digital human modeling and realistic motion generation. Following a comprehensive introduction to the fundamentals of robotic kinematics, dynamics and control systems design, the author extends robotic modeling procedures and motion algorithms to a much higher-dimensional, larger scale and more sophisticated research area, namely digital human modeling. Most of the methods are illustrated by MATLAB (TM) codes and sample graphical visualizations, offering a unique closed loop between conceptual understanding and visualization. Readers are guided through practicing and creating 3D graphics for robot arms as well as digital human models in MATLAB (TM), and through driving them for real-time animation. This work is intended to serve as a robotics textbook with an extension to digital human modeling for senior undergraduate and graduate engineering students. At the same time, it represents a comprehensive reference guide for all researchers, scientists and professionals eager to learn the fundamentals of robotic systems as well as the basic methods of digital human modeling and motion generation.
Requirements engineering has since long acknowledged the importance of the notion that system requirements are stakeholder goals-rather than system functions-and ought to be elicited, modeled and analyzed accordingly. In this book, Nurcan and her co-editors collected twenty contributions from leading researchers in requirements engineering with the intention to comprehensively present an overview of the different perspectives that exist today, in 2010, on the concept of intention in the information systems community. These original papers honor Colette Rolland for her contributions to this field, as she was probably the first to emphasize that 'intention' has to be considered as a first-class concept in information systems engineering. Written by long-term collaborators (and most often friends) of Colette Rolland, this volume covers topics like goal-oriented requirements engineering, model-driven development, method engineering, and enterprise modeling. As such, it is a tour d'horizon of Colette Rolland's lifework, and is presented to her on the occasion of her retirement at CaISE 2010 in Hammamet, the conference she once cofounded and which she helped to grow and prosper for more than 20 years.
The availability of Earth observation and numerical weather prediction data for hydrological modelling and water management has increased significantly, creating a situation that today, for the same variable, estimates may be available from two or more sources of information. Yet, in hydrological modelling, usually, a particular set of catchment characteristics and input data is selected, possibly ignoring other relevant data sources. In this thesis, therefore, a framework is being proposed to enable effective use of multiple data sources in hydrological modelling. In this framework, each available data source is used to derive catchment parameter values or input time series. Each unique combination of catchment and input data sources thus leads to a different hydrological simulation result: a new ensemble member. Together, the members form an ensemble of hydrological simulations. By following this approach, all available data sources are used effectively and their information is preserved. The framework also accommodates for applying multiple data-model integration methods, e.g. data assimilation. Each alternative integration method leads to yet another unique simulation result. Case study results for a distributed hydrological model of Rijnland, the Netherlands, show that the framework can be applied effectively, improve discharge simulation, and partially account for parameter and data uncertainty.
This book constitutes thoroughly revised and selected papers from the Second International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2014, held in Lisbon, Portugal, in January 2014. The 10 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 88 submissions. They are organized in topical sections named: invited papers; modeling languages, tools and architectures; and methodologies, processes and platforms.
This book constitutes the referred proceedings of the 8th China Conference on Image and Graphics Technologies and Applications, IGTA 2014, held in Beijing, China, in June 2014. The 39 papers presented were carefully reviewed and selected from 110 submissions. They cover various aspects of research in image processing and graphics and related topics, including object detection, pattern recognition, object tracking, classification, image segmentation, reconstruction, etc.
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians. |
You may like...
Management Accounting - Retrospect and…
Al Bhimani, Michael Bromwich
Paperback
R1,231
Discovery Miles 12 310
Investigation of Concentration of…
Temporary National Economic Committee
Paperback
R700
Discovery Miles 7 000
Handbook of Management Accounting…
Christopher S. Chapman, Anthony G Hopwood, …
Hardcover
R4,216
Discovery Miles 42 160
|