![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 2: Advanced Internal Combustion Engines (II) focuses on: *Flow and Combustion Diagnosis *Engine Design and Simulation *Heat Transfer and Waste Heat Reutilization *Emission Standard and International Regulations Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
The book includes different contributions that cover interdisciplinary research in the areas of * Error controlled numerical methods, efficient algorithms and software development * Elastic and in elastic deformation processes * Models with multiscales and multi-physics "High Performance" adaptive numerical methods using finite elements (FEM) and boundary elements (BEM) are described as well as efficient solvers for linear systems and corresponding software components for non-linear, coupled field equations of various branches of mechanics, electromagnetics, and geosciences.
The interaction between a user and a device forms the foundation of today's application design. Covering the following topics: A suite of five structural principles helping designers to structure their mockups; An agile method for exploiting desktop eye tracker equipment in combination with mobile devices; An approach to explore large-scale collections based on classification systems; A framework based on the use of modeling and components composition techniques to simplify the development of organizational collaborative systems; A low-cost virtual reality system that provides highly satisfying virtual experiences; Popular hardware and software tools and technologies for developing augmented and virtual reality applications; An implementation to handle connectivity between virtual reality applications and SensAble (R) Technology Phantom Haptic Devices; The results of a research study implementing a teaching technological strategy to help Down syndrome children develop their reading skills; Platform independent models decreasing the level of cohesion between communication technologies and software for ubiquitous computing; A method for applying gamification as a tool to improve the participation and motivation of people in performing different tasks. New Trends in Interaction, Virtual Reality and Modeling collects the best research from Interaccion 2012 and MexIHC 2012, and presents the state-of-the-art in human-computer interaction, user interfaces, user experience and virtual reality. Written by researchers from leading universities, research institutes and industry, this volume forms a valuable source of reference for researchers in HCI and VR.
The model investigated in this work, a particular cellular automaton with stochastic evolution, was introduced as the simplest case of self-organized-criticality, that is, a dynamical system which shows algebraic long-range correlations without any tuning of parameters. The author derives exact results which are potentially also interesting outside the area of critical phenomena. Exact means also site-by-site and not only ensemble average or coarse graining. Very complex and amazingly beautiful periodic patterns are often generated by the dynamics involved, especially in deterministic protocols in which the sand is added at chosen sites. For example, the author studies the appearance of allometric structures, that is, patterns which grow in the same way in their whole body, and not only near their boundaries, as commonly occurs. The local conservation laws which govern the evolution of these patterns are also presented. This work has already attracted interest, not only in non-equilibrium statistical mechanics, but also in mathematics, both in probability and in combinatorics. There are also interesting connections with number theory. Lastly, it also poses new questions about an old subject. As such, it will be of interest to computer practitioners, demonstrating the simplicity with which charming patterns can be obtained, as well as to researchers working in many other areas.
Exploring complex and intelligent analytical and mathematical methods, this book examines how different approaches can be used to optimize program management in the construction industry. It presents an in-depth study of the different program management methods, ranging from simple decision-making techniques and statistics analysis to the more complex linear programming and demonstrates how knowledge-base systems and genetic algorithms can be used to optimize resources and meet time, budget and quality criteria. It addresses topics including decision-making principles, planning and scheduling, mathematical forecasting models, optimization techniques programming and artificial intelligence techniques. Providing a valuable resource for anyone managing multiple projects in the construction industry, this book is intended for civil and construction engineering students, project managers, construction managers and senior engineers.
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the book covers the mathematical concepts such as limit cycles, fractals, chaos, bifurcations, and solitons, that will be applied throughout the book. Numerous computer simulations and exercises allow students to explore topics in greater depth using the Maple computer algebra system. The mathematical level of the text assumes prior exposure to ordinary differential equations and familiarity with the wave and diffusion equations. No prior knowledge of Maple is assumed. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world", or for self-study by practicing scientists and engineers.
Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive - this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.
This book is a comprehensive guide to both the fundamentals of thermal sensors and their advanced functions. Key topics include sensor materials, CMOS-compatible sensors, measurement capabilities, thermal management and manufacturing processes. The introductory chapter covers the basic principles of thermal sensors from the essentials of heat transfer to smart wireless sensors. Later chapters illustrate the wide range of thermal sensor uses, from microprocessor thermal sensing to energy converter applications. Modeling and simulation techniques are used to explain the future direction of the field. Designed for researchers and practitioners working with wireless sensors and thermal management, Thermal Sensors: Principles and Applications for Semiconductor Industries is a valuable reference to the benefits and challenges these sensors offer. Advanced-level students studying mechanical or electrical engineering and networks will also find the content useful.
This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this second volume of the set are organized in topical sections on HMI and robot simulations; modeling and simulation for intelligent manufacturing; military simulation; visualization and virtual reality.
This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this third volume of the set are organized in topical sections on Cloud technologies in simulation applications; fractional calculus with applications and simulations; modeling and simulation for energy, environment and climate; SBA virtual prototyping engineering technology; simulation and Big Data.
Benjamin Meyer performs several psycho-physical experiments to measure the re-adaptation process of glared drivers in traffic scenarios. The author then develops a novel tone mapping algorithm to simulate the recurring contrast perception of the human eye by adjusting the displayed contrast. Depending on background illumination, bright light sources cause considerable perception restrictions for a glared viewer and can deter the driver from perceiving critical objects for several seconds and severely increase the risk of accidents. Based on the results of the conducted user studies, this vision impairment is integrated into a night driving simulator. The modified driving simulation provides a more realistic visualization and enables the analysis of critical traffic scenarios including short-time headlight glares. This leads to better transferability of driving simulator results and enables investigating driving behavior in the presence of glare.
This book highlights recent advances in the development of effective modeling and solution approaches to enhance the performance of military logistics. It seeks to further research in global defense-related topics, including military operations, governmental operations and security, as well as nation support. Additionally its purpose is to promote the global exchange of information and ideas amongst developers and users of military operations research tools and techniques. Over the course of its nine chapters, this edited volume addresses significant issues in military logistics including: a) Restructuring processes via OR methods aimed at improving the efficiency and effectiveness of the military logistics, b) Sense-and-Respond logistics prediction and coordination techniques that provide competitive advantage, spanning the full range of military operations across the strategic, operational and tactical levels of war, c) Procurement and auctioning, d) Inventory and stock control theories and applications, e) Military transport and logistical equipment, and, f) Maintenance, repair and overhaul on operational capability in general and equipment availability. The book aims to bridge the gap between the abundant literature on commercial logistics and its scarce defense & combat counterpart. This collection of useful insights into new trends and research will offer an ideal reference for practitioners and army related personnel interested in integrating scientific rigor to improve logistics management within defense organizations & agencies. Ultimately this book should provide a relevant platform for the latest contributions of operations management, operations research, and computational intelligence towards the enhancement of military logistics.
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
This book constitutes the refereed proceedings of the 7th International Conference on Concept Mapping, CMC 2016, held in Tallinn, Estonia, in September 2016. The 25 revised full papers presented were carefully reviewed and selected from 135 submissions. The papers address issues such as facilitation of learning; eliciting, capturing, archiving, and using "expert" knowledge; planning instruction; assessment of "deep" understandings; research planning; collaborative knowledge modeling; creation of "knowledge portfolios"; curriculum design; eLearning, and administrative and strategic planning and monitoring.
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport at the sediment-water interface and groundwater flow in unconfined aquifers; investigates two-dimensional solute transport from a varying pulse type point source and futile cycles in metabolic flux modeling; studies contaminant concentration prediction along unsteady groundwater flow and modeling synovial fluid flow in human joints; explores the modeling of soil organic carbon and crop growth simulation.
This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.
This book presents an overview of modeling definitions and concepts, theory on human behavior and human performance data, available tools and simulation approaches, model development, and application and validation methods. It considers the data and research efforts needed to develop and incorporate functions for the different parameters into comprehensive escape and evacuation simulations, with a number of examples illustrating different aspects and approaches. After an overview of basic modeling approaches, the book discusses benefits and challenges of current techniques. The representation of evacuees is a central issue, including human behavior and the proper implementation of representational tools. Key topics include the nature and importance of the different parameters involved in ASET and RSET and the interactions between them. A review of the current literature on verification and validation methods is provided, with a set of recommended verification tests and examples of validation tests. The book concludes with future challenges: new scenarios and factors for future model developments, addresses the problem of using deterministic and/or stochastic approaches and proposes, and discusses the use of evacuation models for supporting timely decisions in real-time. Written by international experts, Evacuation Modeling Trends is designed for those involved in safety, from emergency and intervention personnel to students, engineers and researchers.
The book describes the K-Method which has been developed by the authors. The purpose of the K-Method is to negotiate and administrate a complex portfolio of customised materials, all belonging to the same purchasing group (e.g. labels). The underlying idea is to agree prices for specification features, instead of giving each material an individual price based on its unique specification. By doing so, a price formula will be agreed between the buyer and supplier which even defines prices of future materials with any kind of specification.
The Mobile Ad Hoc Network (MANET) has emerged as the next frontier for wireless communications networking in both the military and commercial arena. Handbook of Mobile Ad Hoc Networks for Mobility Models introduces 40 different major mobility models along with numerous associate mobility models to be used in a variety of MANET networking environments in the ground, air, space, and/or under water mobile vehicles and/or handheld devices. These vehicles include cars, armors, ships, under-sea vehicles, manned and unmanned airborne vehicles, spacecrafts and more. This handbook also describes how each mobility pattern affects the MANET performance from physical to application layer; such as throughput capacity, delay, jitter, packet loss and packet delivery ratio, longevity of route, route overhead, reliability, and survivability. Case studies, examples, and exercises are provided throughout the book. Handbook of Mobile Ad Hoc Networks for Mobility Models is for advanced-level students and researchers concentrating on electrical engineering and computer science within wireless technology. Industry professionals working in the areas of mobile ad hoc networks, communications engineering, military establishments engaged in communications engineering, equipment manufacturers who are designing radios, mobile wireless routers, wireless local area networks, and mobile ad hoc network equipment will find this book useful as well.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: *Automotive Reliability Technology *Lightweight Design Technology *Design for Recycling *Dynamic Modeling *Simulation and Experimental Validation *Virtual Design, Testing and Validation *Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.
Predictive Modeling of Dynamic Processes provides an overview of hydrocode technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the fundamental code components. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to each predictive hydrocode. Successfully blending crash simulation, hydrocode technology and impact engineering, this volume fills a gap in the current competing literature available.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three "M's" Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes: An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control Dedicated chapters for advanced topics such as multibody dynamics and micro-electromechanical systems, vehicle mechatronic systems, robot kinematics and dynamics, space robotics and intelligent transportation systems Detailed discussion of cooperative environments and reconfigurable systems Intelligent Mechatronic Systems provides control, electrical and mechanical engineers and researchers in industrial automation with a means to design practical, functional and safe intelligent systems. |
![]() ![]() You may like...
Finer Thermodynamic Formalism - Distance…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,412
Discovery Miles 44 120
Operator-Related Function Theory and…
Karlheinz Groechenig, Yurii Lyubarskii, …
Hardcover
R2,879
Discovery Miles 28 790
Blockchain 2035 - The Digital DNA of…
Andrew D Knapp, Jared C Tate
Hardcover
R1,523
Discovery Miles 15 230
|