![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive - this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.
This book constitutes the refereed proceedings of the 7th International Conference on Concept Mapping, CMC 2016, held in Tallinn, Estonia, in September 2016. The 25 revised full papers presented were carefully reviewed and selected from 135 submissions. The papers address issues such as facilitation of learning; eliciting, capturing, archiving, and using "expert" knowledge; planning instruction; assessment of "deep" understandings; research planning; collaborative knowledge modeling; creation of "knowledge portfolios"; curriculum design; eLearning, and administrative and strategic planning and monitoring.
The interaction between a user and a device forms the foundation of today's application design. Covering the following topics: A suite of five structural principles helping designers to structure their mockups; An agile method for exploiting desktop eye tracker equipment in combination with mobile devices; An approach to explore large-scale collections based on classification systems; A framework based on the use of modeling and components composition techniques to simplify the development of organizational collaborative systems; A low-cost virtual reality system that provides highly satisfying virtual experiences; Popular hardware and software tools and technologies for developing augmented and virtual reality applications; An implementation to handle connectivity between virtual reality applications and SensAble (R) Technology Phantom Haptic Devices; The results of a research study implementing a teaching technological strategy to help Down syndrome children develop their reading skills; Platform independent models decreasing the level of cohesion between communication technologies and software for ubiquitous computing; A method for applying gamification as a tool to improve the participation and motivation of people in performing different tasks. New Trends in Interaction, Virtual Reality and Modeling collects the best research from Interaccion 2012 and MexIHC 2012, and presents the state-of-the-art in human-computer interaction, user interfaces, user experience and virtual reality. Written by researchers from leading universities, research institutes and industry, this volume forms a valuable source of reference for researchers in HCI and VR.
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the book covers the mathematical concepts such as limit cycles, fractals, chaos, bifurcations, and solitons, that will be applied throughout the book. Numerous computer simulations and exercises allow students to explore topics in greater depth using the Maple computer algebra system. The mathematical level of the text assumes prior exposure to ordinary differential equations and familiarity with the wave and diffusion equations. No prior knowledge of Maple is assumed. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world", or for self-study by practicing scientists and engineers.
The book includes different contributions that cover interdisciplinary research in the areas of * Error controlled numerical methods, efficient algorithms and software development * Elastic and in elastic deformation processes * Models with multiscales and multi-physics "High Performance" adaptive numerical methods using finite elements (FEM) and boundary elements (BEM) are described as well as efficient solvers for linear systems and corresponding software components for non-linear, coupled field equations of various branches of mechanics, electromagnetics, and geosciences.
This book is a comprehensive guide to both the fundamentals of thermal sensors and their advanced functions. Key topics include sensor materials, CMOS-compatible sensors, measurement capabilities, thermal management and manufacturing processes. The introductory chapter covers the basic principles of thermal sensors from the essentials of heat transfer to smart wireless sensors. Later chapters illustrate the wide range of thermal sensor uses, from microprocessor thermal sensing to energy converter applications. Modeling and simulation techniques are used to explain the future direction of the field. Designed for researchers and practitioners working with wireless sensors and thermal management, Thermal Sensors: Principles and Applications for Semiconductor Industries is a valuable reference to the benefits and challenges these sensors offer. Advanced-level students studying mechanical or electrical engineering and networks will also find the content useful.
This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this third volume of the set are organized in topical sections on Cloud technologies in simulation applications; fractional calculus with applications and simulations; modeling and simulation for energy, environment and climate; SBA virtual prototyping engineering technology; simulation and Big Data.
Benjamin Meyer performs several psycho-physical experiments to measure the re-adaptation process of glared drivers in traffic scenarios. The author then develops a novel tone mapping algorithm to simulate the recurring contrast perception of the human eye by adjusting the displayed contrast. Depending on background illumination, bright light sources cause considerable perception restrictions for a glared viewer and can deter the driver from perceiving critical objects for several seconds and severely increase the risk of accidents. Based on the results of the conducted user studies, this vision impairment is integrated into a night driving simulator. The modified driving simulation provides a more realistic visualization and enables the analysis of critical traffic scenarios including short-time headlight glares. This leads to better transferability of driving simulator results and enables investigating driving behavior in the presence of glare.
This two volume set (CCIS 623 and 634) constitutes the refereed proceedings of the Second International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2016, held in Harbin, China, in August 2016. The 91 revised full papers presented were carefully reviewed and selected from 338 submissions. The papers are organized in topical sections on Research Track (Part I) and Education Track, Industry Track, and Demo Track (Part II) and cover a wide range of topics related to social computing, social media, social network analysis, social modeling, social recommendation, machine learning, data mining.
This book constitutes the refereed proceedings of the 15th International Conference on Systems Simulation, Asia Simulation 2015, held in Jeju, Korea, in November 2016.The 11 revised full papers presented were carefully reviewed and selected from 126 submissions. The papers are organized in topical sections on model and design; simulation and analysis.
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
Model-based Systems Architecting is a key tool for designing complex industrial systems. It is dedicated to the working systems architects, engineers and modelers, in order to help them master the complex integrated systems that they are dealing with in their day-to-day professional lives. It presents the CESAMES Systems Architecting Method (CESAM), a systems architecting and modeling framework which has been developed since 2003 in close interaction with many leading industrial companies, providing rigorous and unambiguous semantics for all classical systems architecture concepts. This approach is practically robust and easy-to-use: during the last decade, it was deployed in more than 2,000 real system development projects within the industry, and distributed to around 10,000 engineers around the globe.
Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes: An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control Dedicated chapters for advanced topics such as multibody dynamics and micro-electromechanical systems, vehicle mechatronic systems, robot kinematics and dynamics, space robotics and intelligent transportation systems Detailed discussion of cooperative environments and reconfigurable systems Intelligent Mechatronic Systems provides control, electrical and mechanical engineers and researchers in industrial automation with a means to design practical, functional and safe intelligent systems.
Aircraft concepts are always driven by the requirements of the desired m- sion. A di?erent purpose for the use of the aircraft consequently results in a di?erent design. Therefore, depending on the intended outcome, con?i- ing requirements need to be ful?lled, for example, e?cient cruise speed and greatercargocapabilities, in combinationwith shorttake-o?andlanding ?eld lengths, or high speed and agility combined with variable payload demands. Due to the highly complex, non-linear physical environment in which aircraft operate, this task demands that the most advanced methods and tools are employed, to gain the necessary understanding of ?ow phenomena, and to exploit the ?ow physics to achieve maximum aircraft e?ciency. Inthe naturalsciences, researcherstry to create andextend humankno- edge by understanding and explaining the mechanisms of physical processes. In engineering, a designer is limited by certain requirements, and in order to ful?l these requirements the necessary technical tools need to be designed. In general, for a given problem the corresponding scienti?c or technical solution is sought. In order to successfully advance from a problem towards a solution, three main methods may be used. The two classical methods include theory and experiment, which are now being complemented by a third method, - scribedasnumericalsimulation.Theexperimentalapproachis basedonph- ical observation, measurement of relevant values, and methodical variation of the subject matter. For example, such experiments are used to gain a ph- ical understanding as well as to validate and investigate design alternative
In the present authors attempted to have a clear insight into the interworking of geotectonic, geomorphic, hydrologic and anthropogenic factors leading to landslide in the Shiv khola Watershed, the most worst affected region of Darjiling Himalaya. This book includes the parameters responsible for landslide events in mountainous areas. It provides knowledge and understanding to the local people, planners, and policy makers about the causes and consequences of landslides as well as provides a suitable method to mitigate the landslips. The book deals with the role of land, water and soil in landslide phenomena. These three attributes have been described in terms of critical rainfall, critical slope, critical height and changes and development of drainage network in landslides. Mitigations and site-specific management options are evaluated considering the roles of local govt., community and other organizations in both pre-slide and post-slide periods. Various scientific methods have been used to assess the landslides that will bring about tremendous help to researchers in the field. In particular, Researchers in Mountain Geomorphology and Geological and Geographical Society will get tremendous help from some topics such as 1-D slope stability model, SCS Curve Number Technique, Assessment of morphological parameters, application of RS & GIS, Application of Analytical Hierarchy Process. Semi-quantitative approach is followed for understanding spatial distribution of cohesion, friction angle slope, lithology and lineaments, drainage, upslope contributing area, land use and land cover types etc. This book also reveals some techniques and models for initiating slope instability.
This book introduces a new way of analyzing, measuring and thinking about mega-risks, a "paradigm shift" that moves from single-solutions to multiple competitive solutions and strategies. "Robust simulation" is a statistical approach that demonstrates future risk through simulation of a suite of possible answers. To arrive at this point, the book systematically walks through the historical statistical methods for evaluating risks. The first chapters deal with three theories of probability and statistics that have been dominant in the 20th century, along with key mathematical issues and dilemmas. The book then introduces "robust simulation" which solves the problem of measuring the stability of simulated losses, incorporates outliers, and simulates future risk through a suite of possible answers and stochastic modeling of unknown variables. This book discusses various analytical methods for utilizing divergent solutions in making pragmatic financial and risk-mitigation decisions. The book emphasizes the importance of flexibility and attempts to demonstrate that alternative credible approaches are helpful and required in understanding a great many phenomena.
This guide demonstrates how virtual build and test can be supported by the Discrete Event Systems Specification (DEVS) simulation modeling formalism, and the System Entity Structure (SES) simulation model ontology. The book examines a wide variety of Systems of Systems (SoS) problems, ranging from cloud computing systems to biological systems in agricultural food crops. Features: includes numerous exercises, examples and case studies throughout the text; presents a step-by-step introduction to DEVS concepts, encouraging hands-on practice to building sophisticated SoS models; illustrates virtual build and test for a variety of SoS applications using both commercial and open source DEVS simulation environments; introduces an approach based on activity concepts intrinsic to DEVS-based system design, that integrates both energy and information processing requirements; describes co-design modeling concepts and methods to capture separate and integrated software and hardware systems.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 2: Advanced Internal Combustion Engines (II) focuses on: *Flow and Combustion Diagnosis *Engine Design and Simulation *Heat Transfer and Waste Heat Reutilization *Emission Standard and International Regulations Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
The model investigated in this work, a particular cellular automaton with stochastic evolution, was introduced as the simplest case of self-organized-criticality, that is, a dynamical system which shows algebraic long-range correlations without any tuning of parameters. The author derives exact results which are potentially also interesting outside the area of critical phenomena. Exact means also site-by-site and not only ensemble average or coarse graining. Very complex and amazingly beautiful periodic patterns are often generated by the dynamics involved, especially in deterministic protocols in which the sand is added at chosen sites. For example, the author studies the appearance of allometric structures, that is, patterns which grow in the same way in their whole body, and not only near their boundaries, as commonly occurs. The local conservation laws which govern the evolution of these patterns are also presented. This work has already attracted interest, not only in non-equilibrium statistical mechanics, but also in mathematics, both in probability and in combinatorics. There are also interesting connections with number theory. Lastly, it also poses new questions about an old subject. As such, it will be of interest to computer practitioners, demonstrating the simplicity with which charming patterns can be obtained, as well as to researchers working in many other areas.
This book presents an overview of modeling definitions and concepts, theory on human behavior and human performance data, available tools and simulation approaches, model development, and application and validation methods. It considers the data and research efforts needed to develop and incorporate functions for the different parameters into comprehensive escape and evacuation simulations, with a number of examples illustrating different aspects and approaches. After an overview of basic modeling approaches, the book discusses benefits and challenges of current techniques. The representation of evacuees is a central issue, including human behavior and the proper implementation of representational tools. Key topics include the nature and importance of the different parameters involved in ASET and RSET and the interactions between them. A review of the current literature on verification and validation methods is provided, with a set of recommended verification tests and examples of validation tests. The book concludes with future challenges: new scenarios and factors for future model developments, addresses the problem of using deterministic and/or stochastic approaches and proposes, and discusses the use of evacuation models for supporting timely decisions in real-time. Written by international experts, Evacuation Modeling Trends is designed for those involved in safety, from emergency and intervention personnel to students, engineers and researchers.
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.
The book presents the state of the art in high-performance computing and simulation on modern supercomputer architectures. It covers trends in hardware and software development in general, and the future of high-performance systems and heterogeneous architectures specifically. The application contributions cover computational fluid dynamics, material science, medical applications and climate research. Innovative fields like coupled multi-physics or multi-scale simulations are also discussed. All papers were chosen from presentations given at the 20th Workshop on Sustained Simulation Performance in December 2014 at the HLRS, University of Stuttgart, Germany, and the subsequent Workshop on Sustained Simulation Performance at Tohoku University in February 2015.
This book constitutes the refereed proceedings of the 15th International Scientific Conference on Information Technologies and Mathematical Modeling, named after A. F. Terpugov, ITMM 2016, held in Katun, Russia, in September 2016. The 33 full papers presented together with 4 short papers were carefully reviewed and selected from 96 submissions. They are devoted to new results in the queueing theory and its applications, addressing specialists in probability theory, random processes, mathematical modeling as well as engineers dealing with logical and technical design and operational management of telecommunication and computer networks.
Algorithm Issues and Challenges Associated with the Development of Robust CFD Codes.- Flight Path Optimization at Constant Altitude.- A survey on the Newton problem of optimal profiles.- Innovative Rotor Blade Design Code.- Fields of Extremals and Sufficient Conditions for the Simplest Problem of the Calculus of Variations in -Variables.- A Framework for Aerodynamic Shape Optimization.- Optimal Motions of Multibody Systems in Resistive Media.- Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE#x2013;PDE-Constrained Optimal Control.- Variational Approaches to Fracture.- On the Problem of Synchronization of Identical Dynamical Systems: The Huygens#x2019;s Clocks.- Best wing system: an exact solution of the Prandtl#x2019;s problem.- Numerical simulation of the dynamics of boats by a variational inequality approach.- Concepts of Active Noise Aircraft Cockpits Reduction Employed in High Noise Level.- Lekhnitskii#x2019;s Formalism for Stress Concentrations Around Irregularities in Anisotropic Plates: Solutions for Arbitrary Boundary Conditions.- Best Initial Conditions for the Rendezvous Maneuver.- Commercial Aircraft Design for Reduced Noise and Environmental Impact.- Variational Approach to the Problem of the Minimum Induced Drag of Wings.- Plastic Hinges in a Beam.- Problems of Minimal and Maximal Aerodynamic Resistance..- Shock Optimization for Airfoil Design Problems.- Differential Games Treated by a Gradient#x2013;Restoration Approach.- Interval Methods for Optimal Control.- Application of Optimisation Algorithms to Aircraft Aerodynamics.- Different levels of Optimization in Aircraft Design.- Numerical and Analytical Methods for Global Optimization.- The Aeroservoelasticity Qualification Process in Alenia.- Further Steps towards Quantitative Conceptual Aircraft Design.- Some Plebeian Variational Problems.
Session 1 includes 109 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China. This session will act as an international forum for researchers and practitioners interested in the advances in and applications of Intelligent Control Systems. It is an opportunity to present and observe the latest research, results, and ideas in these areas. Intelligent control is a rapidly developing, complex, and challenging field of increasing practical importance and still greater potential. Its applications have a solid core in robotics and mechatronics but branch out into areas as diverse as process control, automotive industry, medical equipment, renewable energy and air conditioning. So, this session will aim to strengthen relationships between industry, research laboratories and universities. All papers published in session 1 will be peer evaluated by at least two conference reviewers. Acceptance will be based primarily on originality and contribution. |
![]() ![]() You may like...
Generalized Mathieu Series
Zivorad Tomovski, Delco Leskovski, …
Hardcover
R3,607
Discovery Miles 36 070
|