![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This book focuses on solving practical problems in calculus with MATLAB. Descriptions and sketching of functions and sequences are introduced first, followed by the analytical solutions of limit, differentiation, integral and function approximation problems of univariate and multivariate functions. Advanced topics such as numerical differentiations and integrals, integral transforms as well as fractional calculus are also covered in the book.
This book focuses the solutions of linear algebra and matrix analysis problems, with the exclusive use of MATLAB. The topics include representations, fundamental analysis, transformations of matrices, matrix equation solutions as well as matrix functions. Attempts on matrix and linear algebra applications are also explored.
This book includes a collection of selected papers presented at the International Conference on Modelling and Simulation in Engineering, Economics, and Management, held at the Faculty of Economics and Business at the University of Girona, Spain, 28-29 June 2018.The conference was organized by the Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE) and the University of Girona with the aim of promoting research in the field of modelling, simulation and management science. This book presents original research studies related to fuzzy logic, soft computing and uncertainty, as well as a number of papers in the field of bibliometrics in social sciences. Presenting new advances in these areas, with a special focus on management, economics and social sciences. It is of great interest to researchers and Ph.D. students working in the field of fuzzy logic, soft computing, uncertainty and bibliometrics.
This book outlines the benefits and limitations of simulation, what is involved in setting up a simulation capability in an organization, the steps involved in developing a simulation model and how to ensure that model results are implemented. In addition, detailed example applications are provided to show where the tool is useful and what it can offer the decision maker. In Simulating Business Processes for Descriptive, Predictive, and Prescriptive Analytics, Andrew Greasley provides an in-depth discussion of Business process simulation and how it can enable business analytics How business process simulation can provide speed, cost, dependability, quality, and flexibility metrics Industrial case studies including improving service delivery while ensuring an efficient use of staff in public sector organizations such as the police service, testing the capacity of planned production facilities in manufacturing, and ensuring on-time delivery in logistics systems State-of-the-art developments in business process simulation regarding the generation of simulation analytics using process mining and modeling people's behavior Managers and decision makers will learn how simulation provides a faster, cheaper and less risky way of observing the future performance of a real-world system. The book will also benefit personnel already involved in simulation development by providing a business perspective on managing the process of simulation, ensuring simulation results are implemented, and that performance is improved.
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.
This volume presents the proceedings of the 12th IFToMM International Symposium on Science of Mechanisms and Machines (SYROM 2017), that was held in "Gheorghe Asachi" Technical University of Iasi, Romania, November 02-03, 2017. It contains applications of mechanisms in several modern technical fields such as mechatronics and robotics, biomechanics, machines and apparatus. The book presents original high-quality contributions on topics related to mechanisms within aspects of theory, design, practice and applications in engineering, including but not limited to: theoretical kinematics, computational kinematics, mechanism design, experimental mechanics, mechanics of robots, dynamics of machinery, dynamics of multi-body systems, control issues of mechanical systems, mechanisms for biomechanics, novel designs, mechanical transmissions, linkages and manipulators, micro-mechanisms, teaching methods, history of mechanism science, industrial and non-industrial applications. In connection with these fields, the book combines the theoretical results with experimental tests.
This edited book captures salient global security challenges and presents 'design' solutions in dealing with wicked problems. Through case studies and applied research this book reveals the many perspectives, tools and approaches to support security design. Security design thereby can support risk and threat analysis, risk communication, problem framing and development of interventions strategies. From the refugee crisis to economic slowdowns in emerging markets, from ever-rising numbers of terrorist and cyberattacks to global water shortages, to the proliferation of the Internet of Things and its impact on the security of our homes, cities and critical infrastructure, the current security landscape is diverse and complex. These global risks have been in the headlines in the last year (Global Risks Report) and pose significant security challenges both nationally and globally. In fact, national security is no longer just national. Non-state actors, cyber NGO, rising powers, and hybrid wars and crimes in strategic areas pose complex challenges to global security. In the words of Horst Rittel (1968):"Design is an activity, which aims at the production of a plan, which plan -if implemented- is intended to bring about a situation with specific desired characteristics without creating unforeseen and undesired side and after effects."
This book constitutes the refereed proceedings of the 4th EAI International Conference on Industrial Networks and Intelligent Systems, INISCOM 2018, held in Da Nang, Vietnam, in August 2018. The 26 full papers were selected from 38 submissions and are organized thematically in tracks: Telecommunications Systems and Networks; Industrial Networks and Applications; Hardware and Software Design and Development; Information Processing and Data Analysis; Signal Processing; Security and Privacy.
This book reports on advanced concepts in fuzzy graph theory, showing a set of tools that can be successfully applied to understanding and modeling illegal human trafficking. Building on the previous book on fuzzy graph by the same authors, which set the fundamentals for readers to understand this developing field of research, this second book gives a special emphasis to applications of the theory. For this, authors introduce new concepts, such as intuitionistic fuzzy graphs, the concept of independence and domination in fuzzy graphs, as well as directed fuzzy networks, incidence graphs and many more.
This textbok deals with modelling, analysis, and control of dynamical systems. Its objective is to familiarize students with the basics of dynamical system theory while equipping them with the tools needed for control system design. The emphasis is on design in order to show how dynamical system theory fits into practical applications. The broad scope of this book allows it to demonstrate the multidisciplinary role of dynamics and control. In particular, it presents neural networks, fuzzy systems, and genetic algorithms, and provides a concise introducton to chaotic systems. Systems and Control covers classical methods as well as the techniques of modern control engineering such as fuzzy logic, neural networks, and genetic algorithms. No special background is necessary to use this text beyond basic differential equations and elements of linear algebra. A free solutions manual is avaialbe for adopting lecturers.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
This text is about spreading of information and influence in complex networks. Although previously considered similar and modeled in parallel approaches, there is now experimental evidence that epidemic and social spreading work in subtly different ways. While previously explored through modeling, there is currently an explosion of work on revealing the mechanisms underlying complex contagion based on big data and data-driven approaches. This volume consists of four parts. Part 1 is an Introduction, providing an accessible summary of the state of the art. Part 2 provides an overview of the central theoretical developments in the field. Part 3 describes the empirical work on observing spreading processes in real-world networks. Finally, Part 4 goes into detail with recent and exciting new developments: dedicated studies designed to measure specific aspects of the spreading processes, often using randomized control trials to isolate the network effect from confounders, such as homophily. Each contribution is authored by leading experts in the field. This volume, though based on technical selections of the most important results on complex spreading, remains quite accessible to the newly interested. The main benefit to the reader is that the topics are carefully structured to take the novice to the level of expert on the topic of social spreading processes. This book will be of great importance to a wide field: from researchers in physics, computer science, and sociology to professionals in public policy and public health.
At the intersection of astronautics, computer science, and social science, this book introduces the challenges and insights associated with computer simulation of human society in outer space, and of the dynamics of terrestrial enthusiasm for space exploration. Never before have so many dynamic representations of space-related social systems existed, some deeply analyzing the logical implications of social-scientific theories, and others open for experience by the general public as computer-generated virtual worlds. Fascinating software ranges from multi-agent artificial intelligence models of civilization, to space-oriented massively multiplayer online games, to educational programs suitable for schools or even for the world's space exploration agencies. At the present time, when actual forays by humans into space are scarce, computer simulations of space societies are an excellent way to prepare for a renaissance of exploration beyond the bounds of Earth.
This book comprises the proceedings of the 4th International Conference on Computational Engineering (ICCE 2017), held in Darmstadt, Germany on September 28-29, 2017. The conference is intended to provide an interdisciplinary meeting place for researchers and practitioners working on computational methods in all disciplines of engineering, applied mathematics and computer science. The aims of the conference are to discuss the state of the art in this challenging field, exchange experiences, develop promising perspectives for future research and initiate further cooperation. Computational Engineering is a modern and multidisciplinary science for computer-based modeling, simulation, analysis, and optimization of complex engineering applications and natural phenomena. The book contains an overview of selected approaches from numerics and optimization of Partial Differential Equations as well as uncertainty quantification techniques, typically in multiphysics environments. Where possible, application cases from engineering are integrated. The book will be of interest to researchers and practitioners of Computational Engineering, Applied Mathematics, Engineering Sciences and Computer Science.
This manual describes the wide range of electromechanical, electrochemical and electro-optical transducers at the heart of current field-deployable ocean observing instruments. Their modes of operation, precision and accuracy are discussed in detail. Observing platforms ranging from the traditional to the most recently developed are described, as are the challenges of integrating instrument suits to individual platforms. Technical approaches are discussed to address environmental constraints on instrument and platform operation such as power sources, corrosion, biofouling and mechanical abrasion. Particular attention is also given to data generated by the networks of observing platforms that are typically integrated into value-added data visualization products, including numerical simulations or models. Readers will learn about acceptable data formats and representative model products. The last section of the book is devoted to the challenges of planning, deploying and maintaining coastal ocean observing systems. Readers will discover practical applications of ocean observations in diverse fields including natural resource conservation, commerce and recreation, safety and security, and climate change resiliency and adaptation. This volume will appeal to ocean engineers, oceanographers, commercial and recreational ocean data users, observing systems operators, and advanced undergraduate and graduate students in the field of ocean observing.
The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.
This volume investigates the construction of group identity in Late La Tene South-East Europe using an innovative statistical modelling method. Death and burial theory underlies the potential of mortuary practices for identity research. The sample used for this volumes's research consists of 370 graves, organized in a specially crated database that records funerary ritual; and grave-good information. In the case of grave-goods, this involved found hierarchically organized categorical variables, which serve to describe each item by combining functional and typological features. The volume also aims to show the compatibility of archaeological theory and statistical modelling. The discussions from archaeological theory rarely find methodological implementations through statistical methods. In this volume, theoretical issues form an integrative part of data preparation, method development and result interpretation.
This book constitutes the proceedings of the 8th International Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems, CyPhy 2018 and 14th International Workshop on Embedded and Cyber-Physical Systems Education, WESE 2018, held in conjunction with ESWeek 2018, in Torino, Italy, in October 2018.The 13 full papers presented together with 1 short paper in this volume were carefully reviewed and selected from 18 submissions. The conference presents a wide range of domains including Modeling, simulation, verification, design, cyber-physical systems, embedded systems, real-time systems, safety, and reliability.
This book aims to shed light on the use of various modelling tools and simulation techniques in the domains of tourism and hospitality. It offers an essential introduction to the most popular methods used for modelling and simulating systems and phenomena of interest, and an overview of these techniques and methods. The main concept of each technique and method is examined and case studies and links to free online tutorials and other helpful resources are provided. The volume aims to encourage students, researchers and practitioners in tourism and hospitality to enhance and enrich their toolbox in order to achieve a better and more profound knowledge of their field.
Since the release of the first commercially available 3D printer in 2009, a thriving consumer market has developed, with a huge variety of kits now available for the home constructor. In their short existence, these printers have developed into capable machines able to make robust and useful objects in a wide range of materials. 3D Printing for Model Engineers - A Practical Guide provides the first truly comprehensive guide to 3D printing in the context of other creating engineering-based hobbies. It covers using 3D Computer Aided Design; 3D printing materials and best practice; joining and finishing 3D printed parts; making your own metal castings from 3D printed parts and building your own 3D printer. Filled with real world examples and applications of 3D printing, this book is based on practical experience and is the essential guide to getting the most from your 3D printer.
The majority of 0D/1D knock models available today are known for their poor accuracy and the great effort needed for their calibration. Alexander Fandakov presents a novel, extensively validated phenomenological knock model for the development of future engine concepts within a 0D/1D simulation environment that has one engine-specific calibration parameter. Benchmarks against the models commonly used in the automotive industry reveal the huge gain in knock boundary prediction accuracy achieved with the approach proposed in this work. Thus, the new knock model contributes substantially to the efficient design of spark ignition engines employing technologies such as full-load exhaust gas recirculation, water injection, variable compression ratio or lean combustion. About the Author Alexander Fandakov holds a PhD in automotive powertrain engineering from the Institute of Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, Germany. Currently, he is working as an advanced powertrain development engineer in the automotive industry.
This book highlights a set of selected, revised and extended papers from the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017), held in Madrid, Spain, on July 26 to 28, 2017. The conference brought together researchers, engineers and practitioners whose work involves methodologies in and applications of modeling and simulation. The papers showcased here represent the very best papers from the Conference, and report on a broad range of new and innovative solutions.
This book covers some important topics in the construction of computable general equilibrium (CGE) models and examines use of these models for the analysis of economic policies, their properties, and their implications. Readers will find explanation and discussion of the theoretical structure and practical application of several model typologies, including dynamic, stochastic, micro-macro, and simulation models, as well as different closure rules and policy experiments. The presentation of applications to various country and problem-specific case studies serves to provide an informed and clearly articulated summary of the state of the art and the most important methodological advancements in the field of policy modeling within the framework of general equilibrium analysis. The book is an outcome of a recent workshop of the Italian Development Economists Association attended by a group of leading practitioners involved in the generation of CGE models and research on modeling the economy and policy making. It will be of interest to researchers, professional economists, graduate students, and knowledgeable policy makers.
The two-volume set LNCS 11295 and 11296 constitutes the thoroughly refereed proceedings of the 25th International Conference on MultiMedia Modeling, MMM 2019, held in Thessaloniki, Greece, in January 2019. Of the 172 submitted full papers, 49 were selected for oral presentation and 47 for poster presentation; in addition, 6 demonstration papers, 5 industry papers, 6 workshop papers, and 6 papers for the Video Browser Showdown 2019 were accepted. All papers presented were carefully reviewed and selected from 204 submissions. |
![]() ![]() You may like...
Trusted Artificial Intelligence in…
John Soldatos, Dimosthenis Kyriazis
Hardcover
R2,553
Discovery Miles 25 530
Bayesian Natural Language Semantics and…
Henk Zeevat, Hans-Christian Schmitz
Hardcover
R3,568
Discovery Miles 35 680
Pearson REVISE BTEC National Information…
Ian Bruce, Daniel Richardson, …
Digital product license key
R543
Discovery Miles 5 430
SpiNNaker - A Spiking Neural Network…
Steve Furber, Petrut Bogdan
Hardcover
R2,180
Discovery Miles 21 800
Essentials of Microservices Architecture…
Chellammal Surianarayanan, Gopinath Ganapathy, …
Hardcover
R2,109
Discovery Miles 21 090
Granular Computing and Decision-Making…
Witold Pedrycz, Shyi-Ming Chen
Hardcover
R2,927
Discovery Miles 29 270
Computer Vision: Specialized Processors…
Eduard Montseny, Joan Frau
Hardcover
R2,978
Discovery Miles 29 780
|