![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Developments in Geographic Information Technology have raised the expectations of users. A static map is no longer enough; there is now demand for a dynamic representation. Time is of great importance when operating on real world geographical phenomena, especially when these are dynamic. Researchers in the field of Temporal Geographical Information Systems (TGIS) have been developing methods of incorporating time into geographical information systems. Spatio-temporal analysis embodies spatial modelling, spatio-temporal modelling and spatial reasoning and data mining. Advances in Spatio-Temporal Analysis contributes to the field of spatio-temporal analysis, presenting innovative ideas and examples that reflect current progress and achievements.
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.
Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experiment design are available, those interested in applying proposed methodologies need a practical presentation and straightforward guidance on analyzing and interpreting experiment results. Written by authors with strong academic reputations and real-world practical experience, Design and Modeling for Computer Experiments is exactly the kind of treatment you need. The authors blend a sound, modern statistical approach with extensive engineering applications and clearly delineate the steps required to successfully model a problem and provide an analysis that will help find the solution. Part I introduces the design and modeling of computer experiments and the basic concepts used throughout the book. Part II focuses on the design of computer experiments. The authors present the most popular space-filling designs - like Latin hypercube sampling and its modifications and uniform design - including their definitions, properties, construction and related generating algorithms. Part III discusses the modeling of data from computer experiments. Here the authors present various modeling techniques and discuss model interpretation, including sensitivity analysis. An appendix reviews the statistics and mathematics concepts needed, and numerous examples clarify the techniques and their implementation. The complexity of real physical systems means that there is usually no simple analytic formula that sufficiently describes the phenomena. Useful both as a textbook and professional reference, this book presents the techniques you need to design and model computer experiments for practical problem solving.
"Provides a lot of reading pleasure and many new insights." Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules
Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experiment design are available, those interested in applying proposed methodologies need a practical presentation and straightforward guidance on analyzing and interpreting experiment results. Written by authors with strong academic reputations and real-world practical experience, Design and Modeling for Computer Experiments is exactly the kind of treatment you need. The authors blend a sound, modern statistical approach with extensive engineering applications and clearly delineate the steps required to successfully model a problem and provide an analysis that will help find the solution. Part I introduces the design and modeling of computer experiments and the basic concepts used throughout the book. Part II focuses on the design of computer experiments. The authors present the most popular space-filling designs - like Latin hypercube sampling and its modifications and uniform design - including their definitions, properties, construction and related generating algorithms. Part III discusses the modeling of data from computer experiments. Here the authors present various modeling techniques and discuss model interpretation, including sensitivity analysis. An appendix reviews the statistics and mathematics concepts needed, and numerous examples clarify the techniques and their implementation. The complexity of real physical systems means that thereis usually no simple analytic formula that sufficiently describes the phenomena. Useful both as a textbook and professional reference, this book presents the techniques you need to design and model computer experiments for practical problem solving.
This book aims at finding some answers to the questions: What is the influence of humans in controlling CAD and how much is human in control of its surroundings? How far does our reach as humans really go? Do the complex algorithms that we use for city planning nowadays live up to their expectations and do they offer enough quality? How much data do we have and can we control? Are today's inventions reversing the humanly controlled algorithms into a space where humans are controlled by the algorithms? Are processing power, robots for the digital environment and construction in particular not only there to rediscover what we already knew and know or do they really bring us further into the fields of constructing and architecture? The chapter authors were invited speakers at the 6th Symposium "Design Modelling Symposium: Humanizing Digital Reality", which took place in Ensa-Versailles, France from 16 - 20 September 2017.
This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.
Modeling and machining are two terms closely related. The benefits of the application of modeling on machining are well known. The advances in technology call for the use of more sophisticated machining methods for the production of high-end components. In turn, more complex, more suitable, and reliable modeling methods are required. This book pertains to machining and modeling, but focuses on the special aspects of both. Many researchers in academia and industry, who are looking for ways to refine their work, make it more detailed, increase their accuracy and reliability, or implement new features, will gain access to knowledge in this book that is very scare to find elsewhere.
A state-of-the-art guide for the implementation of distributed simulation technology.
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: * Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena * Introduces new techniques as needed to address specific problems, in contrast to traditional texts' use of a deductive approach, where abstract general principles lead to specific examples * Elucidates readers' understanding of the "heat transfer takes time" idea-transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications * Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power * Maximizes readers' insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks * Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
The Computer Science and Engineering Handbook characterizes the current state of theory and practice in the field. In this single volume you can find quick answers to the questions that affect your work every day. More than 110 chapters describe fundamental principles, "best practices," research horizons, and their impact upon the professions and society. Glossaries of key terms, references, and sources for further information, including key Web sites, provide you with the most complete information on every topic.
Start animating right away with this tutorial-based guide to Autodesk 3ds Max 2016 Autodesk 3ds Max 2016 Essentials is your perfect hands-on guide to start animating quickly. Using approachable, real-world exercises, you'll master the fundamentals of this leading animation software by following full-color screen shots step by step. Each chapter opens with a quick discussion of concepts and learning objectives, and then launches into hands-on tutorials that give you firsthand experience and a good start on preparing for the 3ds Max certification exam. You'll learn the basics of modeling, texturing, animating, and visual effects as you create a retro-style alarm clock, animate a thrown knife, model a chair, and more. Whether you're a complete beginner or migrating from another 3D application, this task-based book provides the solid grounding you need in Autodesk 3ds Max 2016. * Model your character with polygons, meshes, and more * Add motion with simple and complex animations * Add color and textures to visualize materials and surfaces * Render interior scenes with great lighting and camera placement If you want to learn 3ds Max quickly and painlessly, Autodesk 3ds Max 2016 Essentials helps you start animating today.
With the advent of sophisticated general programming environments like Mathematica, the task of developing new models of metabolism and visualizing their responses has become accessible to students of biochemistry and the life sciences in general. Modelling Metabolism with Mathematica presents the approaches, methods, tools, and algorithms for modelling the chemical-dynamics of metabolic pathways. The authors explain the concepts underpinning the deterministic theory of chemical and enzyme kinetics, present a graded series of computer models of metabolic pathways leading up to that of the human erythrocyte, and document a consistent set of rate equations and associated kinetic parameters.
Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of uncertainty surrounding the methods used to approach these new applications. It aims to stimulate the reader into seeking out new tools for modelling and simulation. Examines the state-of-the-art in recent research into methods of approaching new applications in the field of modelling and simulation Provides an introduction to new modelling tools such as differential inclusions, metric structures in the space of models, semi-discrete events, and use of simulation in parallel optimization techniques Discusses recently developed practical applications: for example the PASION simulation system, stock market simulation, a new fluid dynamics tool, manufacturing simulation and the simulation of social structures Illustrated throughout with a series of case studies "Modelling and Simulation: The Computer Science of Illusion" will appeal to academics, postgraduate students, researchers and practitioners in the modelling and simulation of industrial computer systems. It will also be of interest to those using simulation as an auxiliary tool.
New to CINEMA 4D and looking for an accessible way to get up to speed quickly? Do you already know the basics of the software but need to know the new features or take your skills and understanding a little deeper? If so, look no further than CINEMA 4D Apprentice, your one-stop shop for learning this powerful application. With guidance that takes you beyond just the button-pushing, author Kent McQuilkin guides you through 10 core lessons, starting with the basics before moving onto more complex techniques and concepts and then tying it all together with a final project. CINEMA 4D Apprentice walks you through the software with a project-based approach, allowing you to put lessons learned into immediate practice. Best practices and workflows for motion graphics artists that can be applied to any software application are included. A companion website (www.focalpress.com/cw/mcquilkin) features project files and videos of the techniques in action. Topics covered include: creating basic scenes, modeling, texture mapping mograph in-depth integration with After Effects via CINEWARE lighting, animation, rendering and more motion tracking with the new tools included in R16
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
This book is a collection of research articles that deal with three aspects of simulation and gaming for social design: (1) Theory and methodology, including game system theory and agent-based modeling; (2) Sustainability, including global warming and the energy-food nexus);; and (3) Social entrepreneurship, including business, ethnic, and ethical understanding. The latter two especially form two major areas of clinical knowledge in contemporary life. Simulation and gaming, with its participatory approach, provides participants with a seamless integration of problem solving and education. It has been known as a tool for interdisciplinary communication since the 1960s, and now it is being developed to contribute to global society in the twenty-first century. This is the first book on simulation and gaming for social design that covers all aspects from the methodological foundations to practical examples in the fields of sustainability and social entrepreneurship. Regardless of the size of the problematics, societal system design involves (1) The visioning and conception aspects due to the long-term, overall nature of the goal; (2) Interdisciplinary thinking and communication for the exploration of new states of accommodation with technological systems; and (3) The "human dimension" aspect including education that must be dealt with, thus academic developments of simulation and gaming for social design as system thinking and practice methodologies are anticipated. Simulation and gaming has great potential for development as a tool to facilitate the transfer between theoretical and clinical knowledge.
The understanding and control of transport phenomena in materials processing play an important role in the improvement of conventional processes and in the development of new techniques. Computer modeling of these phenomena can be used effectively for this purpose. Although there are several books in the literature covering the analysis of heat transfer and fluid flow, Computer Modelling of Heat and Fluid Flow in Materials Processing specifically addresses the understanding of these phenomena in materials processing situations. Written at a level suitable for graduate students in materials science and engineering and subjects, this book is ideal for those wishing to learn how to approach computer modeling of transport phenomena and apply these techniques in materials processing. The text includes a number of relevant case studies and each chapter is supported by numerous examples of transport modeling programs.
The extremes of constitutive and centrifuge modelling are explored here, with a range of lectures addressing specific areas of these two types of modelling as well as on specific design problems and the themes of failure, deformations and interfaces.
This book covers the whole spectrum of modeling goals to achieve optimal quality in the process model developed. It focuses on how to balance quality considerations across all semiotic levels when models are used for different purposes, and is based on SEQUAL, a framework for understanding the quality of models and modeling languages, which can take into account all main aspects relating to the quality of models. Chapter 1 focuses on the theoretical foundations, introducing readers to the topics of business processes and business process modeling, as well as the most important concept underlying the modeling of business processes. In turn, Chapter 2 addresses the quality of models in general and business process models in particular. Chapter 3 contains a specialization of SEQUAL for quality of business process models. In Chapter 4, examples of the practical uses of business process models are provided, together with the results of detailed case studies on how to achieve and maintain quality in business process models. Chapter 5 presents a process modeling value framework that demonstrates how to achieve more long-term and higher return on investment with regard to (business) process and enterprise models. Lastly, Chapter 6 reviews the main points of the book and discusses the potential for business process modeling in the future through its combination with other types of modeling. The book has two intended audiences. It is primarily intended for computer science, software engineering and information system students at the postgraduate level who want to know more about business process modeling and the quality of models in preparation for professional practice. The second audience consists of professionals with extensive experience in and responsibilities related to the development and evolution of process-oriented information systems and information systems methodologies in general, who need to formalize and structure their practical experience or update their knowledge as a way to improve their professional activity. The book also includes a number of real-world case studies that make it easier to grasp the main theoretical concepts, helping readers apply the approaches described.
A discussion of the virtual testing of mechanical systems, presenting theories and techniques implemented in the FEDEM Multidisciplinary Simulation Software. The basis for this approach is the non-linear FE formulation and the Master-Slave techniques used for modelling joints and transmissions.
Designed for use in a second course on linear algebra, Matrix Theory and Applications with MATLAB covers the basics of the subject-from a review of matrix algebra through vector spaces to matrix calculus and unitary similarity-in a presentation that stresses insight, understanding, and applications. Among its most outstanding features is the integration of MATLAB throughout the text. Each chapter includes a MATLAB subsection that discusses the various commands used to do the computations in that section and offers code for the graphics and some algorithms used in the text.
Transfer function form, zpk, state space, modal, and state space modal forms. For someone learning dynamics for the first time or for engineers who use the tools infrequently, the options available for constructing and representing dynamic mechanical models can be daunting. It is important to find a way to put them all in perspective and have them available for quick reference.
Expanded to include a broader range of problems than the bestselling first edition, Finite Element Method Using MATLAB: Second Edition presents finite element approximation concepts, formulation, and programming in a format that effectively streamlines the learning process. It is written from a general engineering and mathematical perspective rather than that of a solid/structural mechanics basis.
|
![]() ![]() You may like...
Linear Integer Programming - Theory…
Elias Munapo, Santosh Kumar
Hardcover
R4,011
Discovery Miles 40 110
Introduction to Nonlinear and Global…
Eligius M. T. Hendrix, Boglarka G. -Toth
Hardcover
R1,539
Discovery Miles 15 390
Monte Carlo Statistical Methods
Christian Robert, George Casella
Hardcover
R5,077
Discovery Miles 50 770
Matrix Diagonal Stability in Systems and…
Eugenius Kaszkurewicz, Amit Bhaya
Hardcover
R3,040
Discovery Miles 30 400
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,944
Discovery Miles 29 440
Higher Education 4.0 - The Digital…
Kevin Anthony Jones, Sharma Ravishankar
Hardcover
R4,590
Discovery Miles 45 900
|