![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. "Accelerated Lattice Boltzmann Model for Colloidal Suspensions" introduce the main building-blocks for an improved lattice Boltzmann based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow. The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems."
Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics - CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. Finally, we included a smaller section on software, to highlight the important work that has been done to create high quality problem solving environments that allow to quickly and relatively easily implement a CA model and run simulations, both on the desktop and if needed, on High Performance Computing infrastructures.
The second volume of this research monograph describes a number of applications of Artificial Intelligence in the field of Customer Relationship Management with the focus of solving customer problems. We design a system that tries to understand the customer complaint, his mood, and what can be done to resolve an issue with the product or service. To solve a customer problem efficiently, we maintain a dialogue with the customer so that the problem can be clarified and multiple ways to fix it can be sought. We introduce dialogue management based on discourse analysis: a systematic linguistic way to handle the thought process of the author of the content to be delivered. We analyze user sentiments and personal traits to tailor dialogue management to individual customers. We also design a number of dialogue scenarios for CRM with replies following certain patterns and propose virtual and social dialogues for various modalities of communication with a customer. After we learn to detect fake content, deception and hypocrisy, we examine the domain of customer complaints. We simulate mental states, attitudes and emotions of a complainant and try to predict his behavior. Having suggested graph-based formal representations of complaint scenarios, we machine-learn them to identify the best action the customer support organization can chose to retain the complainant as a customer.
Advanced Simulation of Alternative Energy: Simulations with Simulink (R) and SimPowerSystems (TM) considers models of new and promising installations of renewable energy sources, as well as the new trends in this technical field. The book is focused on wind generators with multiphase generators, models of different offshore parks, wind shear and tower shadow effect, active damping, system inertia support, synchronverter modeling, photovoltaic cells with cascaded H-Bridge multilevel inverters, operation of fuel cells with electrolyzers and microturbines, utilization of ocean wave and ocean tide energy sources, pumped storage hydropower simulation, and simulation of some hybrid systems. Simulink (R) and its toolbox, SimPowerSystems (TM) (its new name Electrical/Specialized Power Systems), are the most popular means for simulation of these systems. More than 100 models of the renewable energy systems that are made with use of this program environment are appended to the book. The aims of these models are to aid students studying various electrical engineering fields including industrial electronics, electrical machines, electrical drives, and production and distribution of electrical energy; to facilitate the understanding of various renewable energy system functions; and to create a platform for the development of systems by readers in their fields. This book can be used by engineers and investigators as well as undergraduate and graduate students to develop new electrical systems and investigate the existing ones.
3D technology is not new; research on 3D started back in early 1960s. But unlike in previous times, 3D technology has now rapidly entered our daily life from cinema to office to home. Using 3D for education is a new yet challenging task. This book will present several innovative efforts using 3D for immersive and interactive learning covering a wide spectrum of education including gifted program, normal (technical) stream, and special needs education. The book will also share experience on curriculum-based 3D learning in classroom setting and co-curriculum-based 3D student research projects. The book is organized as follows. Chapter 1 introduces the fundamentals of 3D educational technology and their applications in immersive and interactive learning. Chapter 2 discusses the use of virtual reality in teaching and learning of Molecular Biology. Chapter 3 presents the daVinci Lab @ River Valley High School. Chapter 4 describes the 3D education development process. Chapter 5 studies the adaption 3D system for learning gains in lower secondary normal (technical) stream. Chapter 6 investigates the effects of virtual reality technology on spatial visualization skills. Chapter 7 showcases a sabbatical program for students to use 3D for Science, Technology, Engineering and Mathematics (STEM) learning. Chapter 8 shares the use of 3D virtual pink dolphin to assist special education. The foreword of this book is written by Dr Cheah Horn Mun, Director, Education Technology Division, Ministry of Education, Singapore.
The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.
This book presents in-depth coverage of laboratory experiments, theories, modeling techniques, and practices for the analysis and design of rock slopes in complex geological settings. It addresses new concepts in connection with the kinematical element method, discontinuity kinematical element method, integrated karst cave stochastic model-limit equilibrium method, improved strength reduction method, and fracture mechanics method, taking into account the relevant geological features. The book is chiefly intended as a reference guide for geotechnical engineering and engineering geology professionals, and as a textbook for related graduate courses.
Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. * Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. * Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. * Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. * Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications.
For all introductory genetics courses. Focus on essential genetic topics and explore the latest breakthroughs Known for its focus on conceptual understanding, problem solving, and practical applications, the bestselling Essentials of Genetics strengthens problem-solving skills and explores the essential genetics topics that today's students need to understand. The 10th Edition has been extensively updated to provide comprehensive coverage of important, emerging topics such as CRISPR-Cas, epigenetics, and genetic testing. Additionally, a new Special Topic chapter covers Advances in Neurogenetics with a focus on Huntington Disease, and new essays on Genetics, Ethics, and Society emphasize ethical considerations that genetics is bringing into everyday life. The accompanying Mastering Genetics online platform includes new tutorials on topics such as CRISPR-Cas and epigenetics, and new Dynamic Study Modules, which support student learning of key concepts and prepare them for class. Also available as a Pearson eText or packaged with Mastering Genetics: Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience that can be adopted on its own as the main course material. It lets students highlight, take notes, and review key vocabulary all in one place, even when offline. Seamlessly integrated videos and other rich media engage students and give them access to the help they need, when they need it. Educators can easily share their own notes with students so they see the connection between their eText and what they learn in class - motivating them to keep reading, and keep learning. If your instructor has assigned Pearson eText as your main course material, search for: 0135588847 / 9780135588840 Pearson eText Essentials of Genetics -- Access Card, 10/e OR 0135588782 / 9780135588789 Pearson eText Essentials of Genetics -- Instant Access, 10/e Also available with Mastering Genetics By combining trusted author content with digital tools and a flexible platform, Mastering personalizes the learning experience and improves results for each student.Mastering Genetics allows students to develop problem-solving skills, learn from tutorials on key genetics concepts, and gain a better understanding of emerging topics. If you would like to purchase both the physical text and Mastering Genetics, search for: 0135173604 / 9780135173602 Essentials of Genetics Plus Mastering Genetics -- Access Card Package Package consists of: 0134898419 / 9780134898414 Essentials of Genetics 0135188687 / 9780135188682 Mastering Genetics with Pearson eText -- ValuePack Access Card -- for Essentials of Genetics Note: You are purchasing a standalone book; Pearson eText and Mastering A&P do not come packaged with this content. Students, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.
Get up and running with AutoCAD using Gindis' combination of step-by-step instruction, examples and insightful explanations. The emphasis from the beginning is on core concepts and practical application of AutoCAD in engineering, architecture, and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written with the user in mind by a long-time AutoCAD professional and instructor based on what works in the industry and the classroom.
The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.
This book explores the inputs with regard to individuals and companies who have developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, etc., that can be leveraged for strengthening the fight against coronavirus. It focuses on technology solutions to stop Covid-19 outbreak and mitigate the risk. The book contains innovative ideas from active researchers who are presently working to find solutions, and they give insights to other researchers to explore the innovative methods and predictive modeling techniques. The novel applications and techniques of established technologies like artificial intelligence (AI), Internet of things (IoT), big data, computer vision and machine learning are discussed to fight the spread of this disease, Covid-19. This pandemic has triggered an unprecedented demand for digital health technology solutions and unleashing information technology to win over this pandemic.
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.
This book covers theoretical aspects of the physical processes, derivation of the governing equations and their solutions. It focusses on hydraulics, hydrology, and contaminant transport, including implementation of computer codes with practical examples. Python-based computer codes for all the solution approaches are provided for better understanding and easy implementation. The mathematical models are demonstrated through applications and the results are analyzed through data tables, plots, and comparison with analytical and experimental data. The concepts are used to solve practical applications like surface and ground water flow, flood routing, crop water requirement and irrigation scheduling. Combines the area of computational hydraulics, hydrology, and water resources engineering with Python Gives deep description of the basic equations and the numerical solutions of both 1D and 2D problems including the numerical codes Includes step-by-step translation of numerical algorithms in computer codes with focus on learners and practitioners Demonstration of theory, mathematical models through practical applications Analysis of each example through data tables, plots, and correlation with reality This book is aimed at senior undergraduates and graduate students in Civil Engineering, Coastal Engineering, Hydrology, and Water Resources Engineering.
This book discusses all the major nature-inspired algorithms with a focus on their application in the context of solving navigation and routing problems. It also reviews the approximation methods and recent nature-inspired approaches for practical navigation, and compares these methods with traditional algorithms to validate the approach for the case studies discussed. Further, it examines the design of alternative solutions using nature-inspired techniques, and explores the challenges of navigation and routing problems and nature-inspired metaheuristic approaches.
This book reports on advanced concepts in fuzzy graph theory, showing a set of tools that can be successfully applied to understanding and modeling illegal human trafficking. Building on the previous book on fuzzy graph by the same authors, which set the fundamentals for readers to understand this developing field of research, this second book gives a special emphasis to applications of the theory. For this, authors introduce new concepts, such as intuitionistic fuzzy graphs, the concept of independence and domination in fuzzy graphs, as well as directed fuzzy networks, incidence graphs and many more.
A Practical Guide to SysML, Third Edition, fully updated for SysML version 1.4, provides a comprehensive and practical guide for modeling systems with SysML. With their unique perspective as leading contributors to the language, Friedenthal, Moore, and Steiner provide a full description of the language along with a quick reference guide and practical examples to help you use SysML. The book begins with guidance on the most commonly used features to help you get started quickly. Part 1 explains the benefits of a model-based approach, providing an overview of the language and how to apply SysML to model systems. Part 2 includes a comprehensive description of SysML that provides a detailed understanding that can serve as a foundation for modeling with SysML, and as a reference for practitioners. Part 3 includes methods for applying model-based systems engineering using SysML to specify and design systems, and how these methods can help manage complexity. Part 4 deals with topics related to transitioning MBSE practice into your organization, including integration of the system model with other engineering models, and strategies for adoption of MBSE.
Simulation and molding are efficient techniques that can aid the city and regional planners and engineers in optimizing the operation of urban systems such as traffic light control, highway toll automation, consensus building, public safety, and environmental protection. When modeling transportation systems such as freeway systems, arterial or downtown grid systems, the city planner and engineer is concerned with capturing the varied interactions between drivers, automobiles, and the infrastructure. Modeling and simulation are used to effectively optimize the design and operation of all of these urban systems. It is possible that in an urban simulation community workshop, citizens can work interactively in front of computers and be able using the click of the mouse to walk up to their own front porch, looking at the proposed shopping mall alternatives across the street from virtually any angle and proposed bridge or tunnel and see how it can reduce traffic congestion. Buildings can be scaled down or taken out, their orientation can be changed in order to check the view and orientation in order to have better site with efficient energy-conservation. The stone or brick material on a building can be replaced by colored concrete, or more trees and lampposts can be placed on the site. Such flexibility in simulation and animation allows creative ideas in the design and orientation of urban sites to be demonstrated to citizens and decision makers before final realization.
3D rotation analysis is widely encountered in everyday problems thanks to the development of computers. Sensing 3D using cameras and sensors, analyzing and modeling 3D for computer vision and computer graphics, and controlling and simulating robot motion all require 3D rotation computation. This book focuses on the computational analysis of 3D rotation, rather than classical motion analysis. It regards noise as random variables and models their probability distributions. It also pursues statistically optimal computation for maximizing the expected accuracy, as is typical of nonlinear optimization. All concepts are illustrated using computer vision applications as examples. Mathematically, the set of all 3D rotations forms a group denoted by SO(3). Exploiting this group property, we obtain an optimal solution analytical or numerically, depending on the problem. Our numerical scheme, which we call the "Lie algebra method," is based on the Lie group structure of SO(3). This book also proposes computing projects for readers who want to code the theories presented in this book, describing necessary 3D simulation setting as well as providing real GPS 3D measurement data. To help readers not very familiar with abstract mathematics, a brief overview of quaternion algebra, matrix analysis, Lie groups, and Lie algebras is provided as Appendix at the end of the volume.
3D Multiscale Physiological Human aims to promote scientific exchange by bringing together overviews and examples of recent scientific and technological advancements across a wide range of research disciplines. As a result, the variety in methodologies and knowledge paradigms are contrasted, revealing potential gaps and opportunities for integration. Chapters have been contributed by selected authors in the relevant domains of tissue engineering, medical image acquisition and processing, visualization, modeling, computer aided diagnosis and knowledge management. The multi-scale and multi-disciplinary research aspects of articulations in humans are highlighted, with a particular emphasis on medical diagnosis and treatment of musculoskeletal diseases and related disorders. The need for multi-scale modalities and multi-disciplinary research is an emerging paradigm in the search for a better biological and medical understanding of the human musculoskeletal system. This is particularly motivated by the increasing socio-economic burden of disability and musculoskeletal diseases, especially in the increasing population of elderly people. Human movement is generated through a complex web of interactions between embedded physiological systems on different spatiotemporal scales, ranging from the molecular to the organ level. Much research is dedicated to the understanding of each of these systems, using methods and modalities tailored for each scale. Nevertheless, combining knowledge from different perspectives opens new venues of scientific thinking and stimulates innovation. Integration of this mosaic of multifaceted data across multiple scales and modalities requires further exploration of methods in simulations and visualization to obtain a comprehensive synthesis. However, this integrative approach cannot be achieved without a broad appreciation for the multiple research disciplines involved.
Provides in-depth tangible results from actual work undertaken in these innovative fields, in prolonged collaboration with the industry partners Includes real projects and case studies developed by the authors
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
This book features a collection of extended papers based on presentations given at the SimHydro 2019 conference, held in Sophia Antipolis in June 2019 with the support of French Hydrotechnic Society (SHF), focusing on "Which models for extreme situations and crisis management?" Hydraulics and related disciplines are frequently applied in extreme situations that need to be understood accurately before implementing actions and defining appropriate mitigation measures. However, in such situations currently used models may be partly irrelevant due to factors like the new physical phenomena involved, the scale of the processes, and the hypothesis included in the different numerical tools. The availability of computational resources and new capacities like GPU offers modellers the opportunity to explore various approaches to provide information for decision-makers. At the same time, the topic of crisis management has sparked interest from stakeholders who need to share a common understanding of a situation. Hydroinfomatics tools can provide essential information in crises; however, the design and integration of models in decision-support systems require further development and the engagement of various communities, such as first responders. In this context, methodologies, guidelines and standards are more and more in demand in order to ensure that the systems developed are efficient and sustainable. Exploring both the limitations and performance of current models, this book presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, as well as better integration of field-scale model data. As such, it will appeal to practitioners, stakeholders, researchers and engineers active in this field. |
You may like...
Using Airborne Lidar in Archaeological…
Simon Crutchley, Peter Crow
Paperback
R1,147
Discovery Miles 11 470
Advances in Principal Component Analysis
Fausto Pedro Garcia Marquez
Hardcover
R3,102
Discovery Miles 31 020
Pioneers in Machinima: The Grassroots of…
Tracy Gaynor Harwood
Hardcover
R1,707
Discovery Miles 17 070
Numerical Modeling and Computer…
Dragan M. Cvetkovic, Gunvant A. Birajdar
Hardcover
R3,071
Discovery Miles 30 710
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
|