![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, methods, and applications of linear and rotary machines.
Queueing theory applications can be discovered in many walks of life including; transportation, manufacturing, telecommunications, computer systems and more. However, the most prevalent applications of queueing theory are in the telecommunications field. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System focuses on discrete time modeling and illustrates that most queueing systems encountered in real life can be set up as a Markov chain. This feature is very unique because the models are set in such a way that matrix-analytic methods are used to analyze them. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System is the most relevant book available on queueing models designed for applications to telecommunications. This book presents clear concise theories behind how to model and analyze key single node queues in discrete time using special tools that were presented in the second chapter. The text also delves into the types of single node queues that are very frequently encountered in telecommunication systems modeling, and provides simple methods for analyzing them. Where appropriate, alternative analysis methods are also presented. This book is for advanced-level students and researchers concentrating on engineering, computer science and mathematics as a secondary text or reference book. Professionals who work in the related industries of telecommunications, industrial engineering and communications engineering will find this book useful as well.
The papers in this volume were selected for presentation at the 19th International Meshing Roundtable (IMR), held October 3-6, 2010 in Chattanooga, Tennessee, USA. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 19 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of co- tries around the world. The 19th International Meshing Roundtable consists of technical presentations from contributed papers, research notes, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected by the Program Committee from among numerous submissions. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. We would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. We extend special thanks to Jacqueline Hunter for her time and effort to make the 19th IMR another outstanding conference.
Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modelling, this two volume work covers implementation and theory in a thorough and systematic fashion. Computer Graphics and Geometric Modelling: Mathematics, contains the mathematical background needed for the geometric modeling topics in computer graphics covered in the first volume. This volume begins with material from linear algebra and a discussion of the transformations in affine & projective geometry, followed by topics from advanced calculus & chapters on general topology, combinatorial topology, algebraic topology, differential topology, differential geometry, and finally algebraic geometry. Two important goals throughout were to explain the material thoroughly, and to make it self-contained. This volume by itself would make a good mathematics reference book, in particular for practitioners in the field of geometric modelling. Due to its broad coverage and emphasis on explanation it could be used as a text for introductory mathematics courses on some of the covered topics, such as topology (general, combinatorial, algebraic, and differential) and geometry (differential & algebraic).
This volume on financial and economic simulations in Swarm marks the continued progress by a group of researchers to incorporate agent-based computer models as an important tool within their discipline. Swarm promotes agent-based computer models as a tool for the study of complex systems. A common language is leading to the growth of user communities in specific areas of application. Furthermore, by providing an organizing framework to guide the development of more problem-specific structures, and by dealing with a whole range of issues that affect their fundamental correctness and their ability to be developed and reused, Swarm has sought to make the use of agent-based models a legitimate tool of scientific investigation that also meets the practical needs of investigators within a community. Swarm's principal foundation is an object-oriented representation of active agents interacting among themselves and with their environment. To this base layer it adds its own structures to drive, record and portrait the events that occur across this world. The specific contents of any world, however, are up to the experimenter to provide, either by building them from scratch or by tapping previous contributions. This book is notable in assembling a rich array of such contributions, which are significant in their own right, but which can also be mined to extract the reusable elements in their respective areas of finance and economics. It also presents three interesting software additions with tutorials in the form of simple financial and economic applications. A Swarm meta-language closer to a natural language', the use of internet-augmented Swarm for experimental economics, and a Swarm visualbuilder will meet the challenges launched by other agent-based modelling competitors. The Swarm community at large can benefit greatly from the lead that the growing field of computational economics is taking to address its own needs, as represented by this book.
This book focuses on two issues related to human figures: realtime dynamics computation and interactive motion generation. In spite of the growing interest in human figures as both physical robots and virtual characters, standard algorithms and tools for their kinematics and dynamics computation have not been investigated very much. "Simulating and Generating Motions of Human Figures" presents original algorithms to simulate, analyze, generate and control motions of human figures, all focusing on realtime and interactive computation. The book provides both practical methods for contact/collision simulation essential for the simulation of humanoid robots and virtual characters and a general framework for online, interactive motion generation of human figures based on the dynamics simulation algorithms.
Forest landscape disturbances are a global phenomenon. Simulation models are an important tool in understanding these broad scale processes and exploring their effects on forest ecosystems. This book contains a collection of insights from a group of ecologists who address a variety of processes: physical disturbances such as drought, wind, and fire; biological disturbances such as defoliating insects and bark beetles; anthropogenic influences; interactions among disturbances; effects of climate change on disturbances; and the recovery of forest landscapes from disturbances-all from a simulation modeling perspective. These discussions and examples offer a broad synopsis of the state of this rapidly evolving subject.
This open access book is a compilation of selected papers from 2020 DigitalFUTURES-The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020). The book focuses on novel techniques for computational design and robotic fabrication. The contents make valuable contributions to academic researchers, designers, and engineers in the industry. As well, readers will encounter new ideas about understanding intelligence in architecture.
This work presents lines of investigation and scientific achievements of the Ukrainian school of optimization theory and adjacent disciplines. These include the development of approaches to mathematical theories, methodologies, methods, and application systems for the solution of applied problems in economy, finances, energy saving, agriculture, biology, genetics, environmental protection, hardware and software engineering, information protection, decision making, pattern recognition, self-adapting control of complicated objects, personnel training, etc. The methods developed include sequential analysis of variants, nondifferential optimization, stochastic optimization, discrete optimization, mathematical modeling, econometric modeling, solution of extremum problems on graphs, construction of discrete images and combinatorial recognition, etc. Some of these methods became well known in the world's mathematical community and are now known as classic methods.
With relevant, timely topics, this book gathers carefully selected, peer-reviewed scientific works and offers a glimpse of the state-of-the-art in disaster prevention research, with an emphasis on challenges in Latin America. Topics include studies on surface frost, an extreme meteorological event that occasionally affects parts of Argentina, Bolivia, Peru, and southern Brazil, with serious impacts on local economies; near-ground pollution concentration, which affects many industrial, overpopulated cities within Latin America; disaster risk reduction and management, which are represented by mathematical models designed to assess the potential impact of failures in complex networks; and the intricate dynamics of international armed conflicts, which can be modeled with the help of stochastic theory. The book offers a valuable resource for professors, researchers, and students from both mathematical and environmental sciences, civil defense coordinators, policymakers, and stakeholders.
This book's aim is to study the mathematical and computational models to analyze the progress, prognosis, prevention, and panacea of breast cancer. The book discusses application of Markov chains and transient mappings, Charlie-Simpson numerical algorithm, models represented by nonlinear reaction-diffusion-type partial differential equations, and related techniques. The book also attempts to design mathematical model of targeted strategic treatments by using Skilled Killer Drugs (SKD1 and SKD2) to suggest the improvisation of future cancer treatments. Both graduate students and researchers of computational biology and oncologists will benefit by studying this book. Researchers of cancer studies and biological sciences will also find this work helpful.
This edited book is one of the first to describe how Autonomous Virtual Humans and Social Robots can interact with real people and be aware of the surrounding world using machine learning and AI. It includes: * Many algorithms related to the awareness of the surrounding world such as the recognition of objects, the interpretation of various sources of data provided by cameras, microphones, and wearable sensors * Deep Learning Methods to provide solutions to Visual Attention, Quality Perception, and Visual Material Recognition * How Face Recognition and Speech Synthesis will replace the traditional mouse and keyboard interfaces * Semantic modeling and rendering and shows how these domains play an important role in Virtual and Augmented Reality Applications. Intelligent Scene Modeling and Human-Computer Interaction explains how to understand the composition and build very complex scenes and emphasizes the semantic methods needed to have an intelligent interaction with them. It offers readers a unique opportunity to comprehend the rapid changes and continuous development in the fields of Intelligent Scene Modeling.
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
Simulation Methods for Reliability and Availability of Complex Systems discusses the use of computer simulation-based techniques and algorithms to determine reliability and availability (R and A) levels in complex systems. The book: shares theoretical or applied models and decision support systems that make use of simulation to estimate and to improve system R and A levels, forecasts emerging technologies and trends in the use of computer simulation for R and A and proposes hybrid approaches to the development of efficient methodologies designed to solve R and A-related problems in real-life systems. Dealing with practical issues, Simulation Methods for Reliability and Availability of Complex Systems is designed to support managers and system engineers in the improvement of R and A, as well as providing a thorough exploration of the techniques and algorithms available for researchers, and for advanced undergraduate and postgraduate students.
This book presents an overview of modeling definitions and concepts, theory on human behavior and human performance data, available tools and simulation approaches, model development, and application and validation methods. It considers the data and research efforts needed to develop and incorporate functions for the different parameters into comprehensive escape and evacuation simulations, with a number of examples illustrating different aspects and approaches. After an overview of basic modeling approaches, the book discusses benefits and challenges of current techniques. The representation of evacuees is a central issue, including human behavior and the proper implementation of representational tools. Key topics include the nature and importance of the different parameters involved in ASET and RSET and the interactions between them. A review of the current literature on verification and validation methods is provided, with a set of recommended verification tests and examples of validation tests. The book concludes with future challenges: new scenarios and factors for future model developments, addresses the problem of using deterministic and/or stochastic approaches and proposes, and discusses the use of evacuation models for supporting timely decisions in real-time. Written by international experts, Evacuation Modeling Trends is designed for those involved in safety, from emergency and intervention personnel to students, engineers and researchers.
This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.
Gathering the proceedings of the 14th CHAOS2021 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies. Chapter "On the Origin of the Universe: Chaos or Cosmos" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
This major reference work represents the first attempt to confront, on a world-wide basis, the way computer associations face up to their own responsibilities in an age increasingly dominated by information and communication technology. The book deals with the codes of ethics and conduct, and related issues. It is the first book to deal with homogenous codes namely codes of national computer societies. Some thirty codes are compared and analysed in depth. To put these into perspective, there are discussion papers covering the methodological, philosophical and organisational issues.
The operation of understanding is the fundamental methodical procedure of hermeneutics and is usually seen as contradiction to scientific explanation by the usage of mathematical models. Yet understanding is the basic way in which humans organize their everyday practice, namely by understanding other people and social situations. In this book the authors demonstrate how an integration of hermeneutical understanding and scientific explanation can be done via the construction of suited geometrical models with neural networks of processes of understanding. In this sense the authors develop some kind of mathematical hermeneutics. Connecting links for the integration of the two methodical poles are the developments of particular models of Artificial Intelligence (AI), which are able to perform certain tasks of understanding.
The planned construction of traffic routes through the European Alps represents a challenge for science and technology. In the past decades, Austria has gained a leading position in the field of tunnelling. This has been verified by many successful projects all over the world, which have been realised with the well-known "New Austrian Tunnelling Method". However, further development and economic success of modern tunnelling methods, which are still partly based on empirical assumptions, can only be assured if their scientific basis is improved. The book discusses the application of numerical simulation methods to assist tunnel engineers. Numerical simulation tools for the estimation of the required tunnel support and the required construction measures are described in this book. By using them, it is possible to study the impact on construction and environment during the planning stage and during construction. This will result in an improvement of the safety and economy of tunnels.
Computer simulation, a powerful technological tool and research-proven pedagogical technique, holds great potential to enhance and transform teaching and learning in education and is therefore a viable tool to engage students in deep learning and higher-order thinking. With the advancement of simulation technology (e.g., virtual reality, artificial intelligence, machine learning) and the expanded disciplines where computer simulation is being used (e.g., data science, cyber security), computer simulation is playing an increasingly significant role in leading the digital transformation in K-12 schools and higher education institutions, as well as training and professional development in corporations, government, and the military. Teaching, Learning, and Leading With Computer Simulations is an important compilation of research that examines the recent advancement of simulation technology and explores innovative ways to utilize advanced simulation programs for the enhancement of teaching and learning outcomes. Highlighting a range of topics such as pedagogy, immersive learning, and social sciences, this book is essential for educators, higher education institutions, deans, curriculum designers, school administrators, principals, IT specialists, academicians, researchers, policymakers, and students.
This work contains an up-to-date coverage of the last 20 years' advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods. This book is intended for econometrics and statistics postgraduates, professors and researchers in economics departments, business schools, statistics departments, or any research centre in the same fields, especially econometricians.
Over the past thirty years, with improvements in optics, electronics, and computer technology, great strides have been made in the quantitative analysis of the visual system. A number of books on eye movement research have been written that have dealt with specific aspects of either eye movement control. However, none of these books provide a comprehensive overview of multiple aspects of the visual system. Moreover, few of these books contain modeling and detailed quantitative analyses of the visual system. Further, since the major books are almost ten years old, there is a need for an update to include the most recent research findings. It is with these considerations in mind that we have carefully compiled this updated, comprehensive, and quantitative model-based edited book on various components of the visual system. Some of the best vision scientists in the world in their respective fields have contributed to chapters in this book. They have expertise in a wide variety of fields, including bioengineering, basic and clinical visual science, medicine, neurophysiology, optometry, and psychology. Their combined efforts have resulted in a high quality book that covers modeling and quantitative analysis of optical, neurosensory, oculomotor, perceptual and clinical systems. It includes only those techniques and models that have such fundamentally strong physiological, control system, and perceptual bases that they will serve as foundations for models and analysis techniques in the future. The book is aimed first towards seniors and beginning graduate students in biomedical engineering, neurophysiology, optometry, and psychology, who will gain a broad understanding of quantitative analysisof the visual system. In addition, it has sufficient depth in each area to be useful as an updated reference and tutorial for graduate and post-doctoral students, as well as general vision scientists.
The competitiveness of firms, regions and countries greatly depends on the generation, dissemination and application of new knowledge. Modern innovation research is challenged by the need to incorporate knowledge generation and dissemination processes into the analysis so as to disentangle the complexity of these dynamic processes. With innovation, however, strong uncertainty, nonlinearities and actor heterogeneity become central factors that are at odds with traditional modeling techniques anchored in equilibrium and homogeneity. This text introduces SKIN (Simulation Knowledge Dynamics in Innovation Networks), an agent-based simulation model that primarily focuses on joint knowledge creation and exchange of knowledge in innovation co-operations and networks. In this context, knowledge is explicitly modeled and not approximated by, for instance, the level of accumulated R&D investment. The SKIN approach supports applications in different domains ranging from sector-based research activities in knowledge-intensive industries to the activities of international research consortia engaged in basic and applied research. Following a general description of the SKIN model, several applications and modifications are presented. Each chapter introduces in detail the structure of the model, the relevant methodological considerations and the analysis of simulation results, while options for empirically validating the models' structure and outcomes are also discussed. The book considers the scope of further applications and outlines prospects for the development of joint modeling strategies.
This fully updated book explores all-new and revised protocols involving the use of in silico models, particularly with regard to pharmaceuticals. Divided into five sections, the volume covers the modeling of pharmaceuticals in the body, toxicity data for modeling purposes, in silico models for multiple endpoints, a number of platforms for evaluating pharmaceuticals, as well as an exploration of challenges, both scientific and sociological. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and implementation advice necessary for successful results. Authoritative and comprehensive, In Silico Methods for Predicting Drug Toxicity, Second Edition aims to guide the reader through the correct procedures needed to harness in silico models, a field which now touches a wide variety of research specialties. |
![]() ![]() You may like...
Augmented Reality and Virtual Reality…
M. Claudia Tom Dieck, Timothy H. Jung, …
Hardcover
R4,935
Discovery Miles 49 350
Serious Games and Virtual Worlds in…
Klaus Bredl, Wolfgang Boesche
Hardcover
R4,851
Discovery Miles 48 510
Advanced Multimedia and Ubiquitous…
James J (Jong Hyuk) Park, Han-Chieh Chao, …
Hardcover
R6,798
Discovery Miles 67 980
Visual Computing for Medicine - Theory…
Bernhard Preim, Charl P Botha
Hardcover
R2,166
Discovery Miles 21 660
|