Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Focuses on the assumptions underlying the algorithms rather than their statistical properties Presents cutting-edge analysis of factor models and finite mixture models. Uses a hands-on approach to examine the assumptions made by the models and when the models fail to estimate accurately Utilizes interesting real-world data sets that can be used to analyze important microeconomic problems Introduces R programming concepts throughout the book. Includes appendices that discuss many of the concepts introduced in the book, as well as measures of uncertainty in microeconometrics.
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universitat Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.
Diving the Thistlegorm is a unique in-depth look at one of the world's best-loved shipwrecks, the World War II British Merchant Navy steamship, featuring award-winning underwater photography. In this highly visual guide, cutting edge photographic methods enable views of the famous wreck and its fascinating cargo which were previously impossible. Sitting upright in 30m of clear, inviting Red Sea waters, the ship is packed with the materials of war. Largely complete lorries, trucks, motorbikes, aircraft spares and airfield equipment are crammed into the forward holds and the remains of other vehicles lie amongst boxes of ammunition in the exploded aft holds. Often referred to as an underwater museum, the wreck fascinates visitors for dive after dive. The book is the culmination of decades of experience, archaeological and photographic expertise, many hours underwater, months of computer processing time, and days spent researching and verifying the history of the ship and its cargo. For the first time, Diving the Thistlegorm brings the rich and complex contents of the wreck together, identifying individual items and illustrating where they can be found. As the expert team behind the underwater photography, reconstructions and explanations take you through the wreck in incredible detail, you will discover not only what has been learned but also what mysteries are still to be solved. Limited run of hardbacks.
A Focus on SLM and SLS Methods in 3D Printing is an indispensable collection of articles for anyone involved in additive manufacturing - from academics and researchers through to engineers and managers within the manufacturing industry. The collection features examples of innovative research involving selective laser melting and selective laser sintering techniques applied across a range of contexts.
Geospatial information modeling and mapping has become an important tool for the investigation and management of natural resources at the landscape scale. Spatial Statistics: GeoSpatial Information Modeling and Thematic Mapping reviews the types and applications of geospatial information data, such as remote sensing, geographic information systems (GIS), and GPS as well as their integration into landscape-scale geospatial statistical models and maps. The book explores how to extract information from remotely sensed imagery, GIS, and GPS, and how to combine this with field data-vegetation, soil, and environmental-to produce a spatial model that can be reconstructed and displayed using GIS software. Readers learn the requirements and limitations of each geospatial modeling and mapping tool. Case studies with real-life examples illustrate important applications of the models. Topics covered in this book include: An overview of the geospatial information sciences and technology and spatial statistics Sampling methods and applications, including probability sampling and nonrandom sampling, and issues to consider in sampling and plot design Fine and coarse scale variability Spatial sampling schemes and spatial pattern Linear and spatial correlation statistics, including Moran's I, Geary's C, cross-correlation statistics, and inverse distance weighting Geospatial statistics analysis using stepwise regression, ordinary least squares (OLS), variogram, kriging, spatial auto-regression, binary classification trees, cokriging, and geospatial models for presence and absence data How to use R statistical software to work on statistical analyses and case studies, and to develop a geospatial statistical model
Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and micr
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
From mulching to greenhouses, the air space between the cover and the soil surface is the key to the classification of climates under cover. The same mechanism governs environments produced by the various covers. This book describes and analyses all the different environments from mulching to greenhouses. The relationship between plants and environment is another important topic in the book. Stress is placed on the link between quantitative phenomena and qualitative analyses. Most phenomena involved are nonlinear and non-steady-state. An approach called System Dynamics is used, and simulation models developed in the simulation language CSMP are fully used. The subjects covered are of relevance to graduate students, to scientists and researchers in agriculture and biological sciences and, of course, to agricultural organizations in both the developing and developed countries.
The new edition of 3D Game Textures: Create Professional Game Art Using Photoshop features the most up-to-date techniques that allow you to create your own unique textures, shaders, and materials. Revised to take new technology into account, it is an ideal hands-on resource for creating online worlds, simulations, web-based applications, and architectural visualization projects. Continuing the practical, no-nonsense approach of its predecessors, the fourth edition shows you how to advance your digital art skills with textures and shaders by exploring their interactions in single objects or entire scenes. It contains expanded coverage of shader nodes, and the companion website-www.lukeahearn.com/textures-has been updated to include video tutorials as well as updated sample textures, shaders, materials, actions, brushes, and all of the art from the book.
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy modules. The Python source code and data files are available on the author's website. The book's five sections present: An overview of problem solving and simple Python programs, introducing the basic models and techniques for designing and implementing problem solutions, independent of software and hardware tools Programming principles with the Python programming language, covering basic programming concepts, data definitions, programming structures with flowcharts and pseudo-code, solving problems, and algorithms Python lists, arrays, basic data structures, object orientation, linked lists, recursion, and running programs under Linux Implementation of computational models with Python using Numpy, with examples and case studies The modeling of linear optimization problems, from problem formulation to implementation of computational models This book introduces the principles of computational modeling as well as the approaches of multi- and interdisciplinary computing to beginners in the field. It provides the foundation for more advanced studies in scientific computing, including parallel computing using MPI, grid computing, and other methods and techniques used in high-performance computing.
This book is open access under a CC BY 4.0 license. This book summarizes work being pursued in the context of the CIPRNet (Critical Infrastructure Preparedness and Resilience Research Network) research project, co-funded by the European Union under the Seventh Framework Programme (FP7). The project is intended to provide concrete and on-going support to the Critical Infrastructure Protection (CIP) research communities, enhancing their preparedness for CI-related emergencies, while also providing expertise and technologies for other stakeholders to promote their understanding and mitigation of the consequences of CI disruptions, leading to enhanced resilience. The book collects the tutorial material developed by the authors for several courses on the modelling, simulation and analysis of CIs, representing extensive and integrated CIP expertise. It will help CI stakeholders, CI operators and civil protection authorities understand the complex system of CIs, and help them adapt to these changes and threats in order to be as prepared as possible for mitigating emergencies and crises affecting or arising from CIs.
This book, originally published in 1970, concerns the new technique of computer simulation in psychology at the time. Computer programs described include models of learning, problem-solving, pattern recognition, the use of language, and personality. More general topics are discussed including the evaluation of such models, the relation of the field to cybernetics, and the problem posed by consciousness. Today it can be read and enjoyed in its historical context.
When I attended college we studied vacuum tubes in our junior year. At that time an average radio had ?ve vacuum tubes and better ones even seven. Then transistors appeared in 1960s. A good radio was judged to be one with more thententransistors. Latergoodradioshad15-20transistors and after that everyone stopped counting transistors. Today modern processors runing personal computers have over 10milliontransistorsandmoremillionswillbeaddedevery year. The difference between 20 and 20M is in complexity, methodology and business models. Designs with 20 tr- sistors are easily generated by design engineers without any tools, whilst designs with 20M transistors can not be done by humans in reasonable time without the help of Prof. Dr. Gajski demonstrates the Y-chart automation. This difference in complexity introduced a paradigm shift which required sophisticated methods and tools, and introduced design automation into design practice. By the decomposition of the design process into many tasks and abstraction levels the methodology of designing chips or systems has also evolved. Similarly, the business model has changed from vertical integration, in which one company did all the tasks from product speci?cation to manufacturing, to globally distributed, client server production in which most of the design and manufacturing tasks are outsourced.
The third edition of this hands-on textbook pursues the focus on the principles of wireless sensor networks (WSNs), their applications, their protocols and standards, and their analysis and test tools; a meticulous care has been accorded to the definitions and terminology. To make WSNs felt and seen, the adopted technologies as well as their manufacturers are presented in detail. In introductory computer networking books, chapters sequencing follows the bottom up or top down architecture of the seven layers protocol. This book is some more steps after, both horizontally and vertically, the view and understanding are getting clearer, chapters ordering is based on topics significance to the elaboration of wireless sensor networks (WSNs) concepts and issues. This book is intended for a wide audience, it is meant to be help and motivate, for both the senior undergraduates, postgraduates, researchers, and practitioners; concepts and WSNs related applications are laid out, research and practical issues are backed by appropriate literature, and new trends are put under focus. For senior undergraduate students, it familiarizes with conceptual foundations, applications and practical projects implementations. For graduate students and researchers, energy-efficient routing protocols, transport layer protocols and cross-layering protocols approach are presented. Testbeds and simulators provide a must follow emphasis on the analysis methods and tools for WSNs. For practitioners, besides applications and deployment, the manufacturers and components of WSNs at several platforms and testbeds are fully explored.
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS (R), a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS (R) commands and ANSYS (R) screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS (R) through both the Graphics User Interface (GUI) and the ANSYS (R) Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: * An introduction to FEM * Fundamentals and analysis capabilities of ANSYS (R) * Fundamentals of discretization and approximation functions * Modeling techniques and mesh generation in ANSYS (R) * Weighted residuals and minimum potential energy * Development of macro files * Linear structural analysis * Heat transfer and moisture diffusion * Nonlinear structural problems * Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS (R)-GUI Electronic supplementary material for using ANSYS (R) can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader's own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 - 2009 and the 7th workshop was held in Rimini, Italy, in 2013.
Make: Getting Started with 3D Printing is a practical, informative, and inspiring book that guides readers step-by-step through understanding how this new technology will empower them to take full advantage of all it has to offer. The book includes fundamental topics such as a short history of 3D printing, the best hardware and software choices for consumers, hands-on tutorial exercises the reader can practice for free at home, and how to apply 3D printing in the readers' life and profession. For every maker or would-be maker who is interested, or is confused, or who wants to get started in 3D printing today, this book offers methodical information that can be read, digested, and put into practice immediately!
Given the importance of interdisciplinary work in sustainability, Simulation of Ecological and Environmental Models introduces the theory and practice of modeling and simulation as applied in a variety of disciplines that deal with earth systems, the environment, ecology, and human-nature interactions. Based on the author's many years of teaching graduate and undergraduate students in the United States, Spain, and Latin America, the textbook shows how to implement simulations and analyze the results using an open-source software platform. Learn How to Use a Broad Range of Environmental Models The textbook is organized into three parts to allow greater flexibility using the material in various countries and types of curricula. The first part provides a tutorial-style mathematical review and a gentle introduction to the basics of R software. The second part explains the fundamentals of modeling methodology through one-dimensional models. After a review of matrix algebra, the third part progresses to multidimensional models, focusing on structured populations, communities, and ecosystems. The final chapters show how simple models are hooked together to generate more comprehensive models. Build from Fundamental Concepts to Problem Solving Each chapter starts with conceptual and theoretical material to give a firm foundation in how the methods work. Examples and exercises illustrate the applications and demonstrate how to go from concepts to problem solving. Hands-on computer sessions let students grasp the practical implications and learn by doing. Throughout, the computer examples and exercises use seem, an open-source R package developed by the author, which lets students quickly produce simulations and explore the effects of changing conditions in the model. This practical book is a comprehensive, unified presentation of ecological and environmental m
The complexity of specifications and the number of materials options available today for concrete production mean that the traditional procedure of making trial mixes is now unnecessary, expensive and time consuming. Using J.D Dewar's research, this book shows how a small amount of materials data can be used confidently to predict the composition of the ideal product.
Applied Probability presents a unique blend of theory and
applications, with special emphasis on mathematical modeling,
computational techniques, and examples from the biological
sciences. It can serve as a textbook for graduate students in
applied mathematics, biostatistics, computational biology, computer
science, physics, and statistics. Readers should have a working
knowledge of multivariate calculus, linear algebra, ordinary
differential equations, and elementary probability theory.
The use of simulation modeling and analysis is becoming increasingly more popular as a technique for improving or investigating process performance. This book is a practical, easy-to-follow reference that offers up-to-date information and step-by-step procedures for conducting simulation studies. It provides sample simulation project support material, including checklists, data-collection forms, and sample simulation project reports and publications to facilitate practitioners' efforts in conducting simulation modeling and analysis projects. Simulation Modeling Handbook: A Practical Approach has two major advantages over other treatments. First, it is independent of any particular simulation software, allowing readers to use any commercial package or programming language. Second, it was written to insulate practitioners from unnecessary simulation theory that does not focus on their average, practical needs. As the popularity of simulation studies continues to grow, the planning and execution of these projects, more and more engineering and management professionals will be called upon to perform these tasks. With its simple, no-nonsense approach and focus on application rather than theory, this comprehensive and easy-to-understand guide is the ideal vehicle for acquiring the background and skills needed to undertake effective simulation projects. Features Presents step-by-step procedures for conducting successful simulation modeling and analysis Addresses every phase of performing simulations, from formulating the problem to presenting study results and recommendations Uses approaches applicable regardless of the specific simulation or software used Includes a summary of the major simulation software packages and discusses the pros and cons of using general purpose programming languages
The SISDEP 93 conference proceedings present outstanding research and development results in the area of numerical process and device simulation. The miniaturization of today's semiconductor devices, the usage of new materials and advanced process steps in the development of new semiconductor technologies suggests the design of new computer programs. This trend towards more complex structures and increasingly sophisticated processes demands advanced simulators, such as fully three-dimensional tools for almost arbitrarily complicated geometries. With the increasing need for better models and improved understanding of physical effects, these proceedings support the simulation community and the process- and device engineers who need reliable numerical simulation tools for characterization, prediction, and development. This book covers the following topics: process simulation and equipment modeling, device modeling and simulation of complex structures, device simulation and parameter extraction for circuit models, integration of process, device and circuit simulation, practical applications of simulation, algorithms and software. |
You may like...
Recent Advances in Numerical Simulations
Francisco Bulnes, Jan Peter Hessling
Hardcover
Digital Image and Video Watermarking and…
Sudhakar Ramakrishnan
Hardcover
Handbook of Research on Intelligent…
Anil Kumar, Manoj Kumar Dash, …
Hardcover
R7,213
Discovery Miles 72 130
Advances in Principal Component Analysis
Fausto Pedro Garcia Marquez
Hardcover
|