![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
The papers in this volume comprise the refereed proceedings of the Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA2008), in Beijing, China, 2008. The conference on the Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA 2008) is cooperatively sponsored and organized by the China Agricultural University (CAU), the National Engineering Research Center for Information Technology in Agriculture (NERCITA), the Chinese Society of Agricultural Engineering (CSAE) , International Federation for Information Processing (IFIP), Beijing Society for Information Technology in Agriculture, China and Beijing Research Center for Agro-products Test and Farmland Inspection, China. The related departments of China's central government bodies like: Ministry of Science and Technology, Ministry of Industry and Information Technology, Ministry of Education and the Beijing Municipal Natural Science Foundation, Beijing Academy of Agricultural and Forestry Sciences, etc. have greatly contributed and supported to this event. The conference is as good platform to bring together scientists and researchers, agronomists and information engineers, extension servers and entrepreneurs from a range of disciplines concerned with impact of Information technology for sustainable agriculture and rural development. The representatives of all the supporting organizations, a group of invited speakers, experts and researchers from more than 15 countries, such as: the Netherlands, Spain, Portugal, Mexico, Germany, Greece, Australia, Estonia, Japan, Korea, India, Iran, Nigeria, Brazil, China, etc.
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both recent references and seminal ones from the past. Since the background of the authors is in solid mechanics and mathematical physics, the presented BEM formulations are valid for many areas such as civil engineering, geophysics, material science and all others concerning elastic wave propagation through inhomogeneous and heterogeneous media. The material presented in this book is suitable for self-study. The book is written at a level suitable for advanced undergraduates or beginning graduate students in solid mechanics, computational mechanics and fracture mechanics.
This book introduces readers to some of the most significant advances in core computer science-based technologies. At the dawn of the 4th Industrial Revolution, the field of computer science-based technologies is growing continuously and rapidly, and is developing both in itself and in terms of its applications in many other disciplines. Written by leading experts and consisting of 18 chapters, the book is divided into seven parts: (1) Computer Science-based Technologies in Education, (2) Computer Science-based Technologies in Risk Assessment and Readiness, (3) Computer Science-based Technologies in IoT, Blockchains and Electronic Money, (4) Computer Science-based Technologies in Mobile Computing, (5) Computer Science-based Technologies in Scheduling and Transportation, (6) Computer Science-based Technologies in Medicine and Biology, and (7) Theoretical Advances in Computer Science with Significant Potential Applications in Technology. Featuring an extensive list of bibliographic references at the end of each chapter to help readers probe further into the application areas of interest to them, this book is intended for professors, researchers, scientists, engineers and students in computer science-related disciplines. It is also useful for those from other disciplines wanting to become well versed in some of the latest computer science-based technologies.
This book presents the fundamentals of evolutionary game theory and applies them to the analysis of epidemics, which is of paramount importance in the aftermath of the worldwide COVID-19 pandemic. The primary objective of this monograph is to deliver a powerful tool to model and analyze the spread of an infectious disease during a pandemic as well as the human decision dynamics. The book employs a variant of the "vaccination game," in which a mathematical epidemiological model dovetails with evolutionary game theory. From a social physics standpoint, this book introduces an extended concept of the vaccination game starting from the fundamental issues and touching on the newest practical applications. The book first outlines the fundamental basis of evolutionary game theory, in which a two-player and two-strategy game, the so-called 2 x 2 game, and a multi-player game are concisely introduced, and the important issue of how social dilemmas are quantified is highlighted. Subsequently, the book discusses various recent applications of the extended concept of the vaccination game so as to quantitatively evaluate provisions other than vaccination, including practical intermediate protective measures such as mask-wearing, efficiency of quarantine compared with that of isolation policies for suppressing epidemics, efficiency of preemptive versus late vaccination, and optimal subsidy policies for vaccination.
This book is a collection of papers presented at the Forum The Impact of Applications on Mathematics in October 2013. It describes an appropriate framework in which to highlight how real-world problems, over the centuries and today, have influenced and are influencing the development of mathematics and thereby, how mathematics is reshaped, in order to advance mathematics and its application. The contents of this book address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that result when mathematics is involved with the advancement of science and technology."
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fifth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including uncertainty quantification, plasma physics simulations, and computational chemistry, to name but a few.
Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive - this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.
State-of-the-art airbag algorithms make a decision to fire restraint systems in a crash by evaluating the deceleration of the entire vehicle during the single events of the accident. In order to meet the ever increasing requirements of consumer test organizations and global legislators, a detailed knowledge of the nature and direction of the crash would be of great benefit. The algorithms used in current vehicles can only do this to a limited extent. Andre Leschke presents a completely different algorithm concept to solve these problems. In addition to vehicle deceleration, the chronological sequence of an accident and the associated local and temporal destruction of the vehicle are possible indicators for an accident's severity. About the Author: Dr. Andre Leschke has earned his doctoral degree from Tor-Vergata University of Rome, Italy. Currently, he is working as head of a team of vehicle safety developers in the German automotive industry.
"Social Simulation for a Digital Society" provides a cross-section of state-of-the-art research in social simulation and computational social science. With the availability of big data and faster computing power, the social sciences are undergoing a tremendous transformation. Research in computational social sciences has received considerable attention in the last few years, with advances in a wide range of methodologies and applications. Areas of application of computational methods range from the study of opinion and information dynamics in social networks, the formal modeling of resource use, the study of social conflict and cooperation to the development of cognitive models for social simulation and many more. This volume is based on the Social Simulation Conference of 2017 in Dublin and includes applications from across the social sciences, providing the reader with a demonstration of the highly versatile research in social simulation, with a particular focus on public policy relevance in a digital society. Chapters in the book include contributions to the methodology of simulation-based research, theoretical and philosophical considerations, as well as applied work. This book will appeal to students and researchers in the field.
This book discusses systems of damage detection and structural health monitoring in mechanical, civil, and aerospace structures. It utilizes principles of fuzzy logic, probability theory, and signal processing to develop systems and approaches that are robust in the presence of both noise in the data and variations in properties of materials which are intrinsic to the process of mass production. This volume will be useful to graduate students, researchers, and engineers working in this area, especially those looking to understand and address model uncertainty in their algorithms.
This fully updated book explores all-new and revised protocols involving the use of in silico models, particularly with regard to pharmaceuticals. Divided into five sections, the volume covers the modeling of pharmaceuticals in the body, toxicity data for modeling purposes, in silico models for multiple endpoints, a number of platforms for evaluating pharmaceuticals, as well as an exploration of challenges, both scientific and sociological. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and implementation advice necessary for successful results. Authoritative and comprehensive, In Silico Methods for Predicting Drug Toxicity, Second Edition aims to guide the reader through the correct procedures needed to harness in silico models, a field which now touches a wide variety of research specialties.
This book explores how environmental urban design can benefit from established and emerging representation and simulation techniques that meet the need for a multisensory approach. Bringing together contributions by researchers and practicing professionals that approach the topics discussed from both theoretical and practical perspectives and draw on case-study applications, it addresses important themes including digital modeling, physical modeling, mapping, and simulation. The chapters are linked by their relevance to simple but crucial questions: How can representational solutions enhance an urban design approach in which people's well-being is considered the primary goal? How can one best represent and design the ambiance of places? What kinds of technologies and tools are available to support multisensory urban design? How can current and future environments be optimally represented and simulated, taking into account the way in which we experience places? Shedding new light on these key questions, the book offers both a reference guide for those engaged in applied research, and a toolkit for professionals and students.
This essential volume explores a variety of tools and protocols of structure-based (homology modeling, molecular docking, molecular dynamics, protein-protein interaction network) and ligand-based (pharmacophore mapping, quantitative structure-activity relationships or QSARs) drug design for ranking and prioritization of candidate molecules in search of effective treatment strategy against coronaviruses. Beginning with an introductory section that discusses coronavirus interactions with humanity and COVID-19 in particular, the book then continues with sections on tools and methodologies, literature reports and case studies, as well as online tools and databases that can be used for computational anti-coronavirus drug research. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical detail and implementation advice that ensures high quality results in the lab. Comprehensive and timely, In Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols is an ideal reference for researchers working on the development of novel anti-coronavirus drugs for SARS-CoV-2 and for coronaviruses that will likely appear in the future.
The book presents select proceedings of Global meet on 'Computational Modelling and Simulation, Recent Innovations, Challenges and Perspectives, 2020. This book covers leading-edge technologies from different domains such as computation in optimization and control, multiscale and multiphysics modeling and computation analysis, environmental modeling, modeling approaches to enterprise systems and services, finite element analysis, dependability and security, high-performance computation/cloud computing applications, computational biology and chemistry and computational mechanics. The primary goal of this book is to strengthen pre-eminence in computational modeling and simulation by catalyzing the transformative use of innovative developments in a wide range of disciplines to achieve lasting societal impact. The book discusses on how to perform simulation of large complex dynamic systems in an efficient manner using advanced computational analysis. The inter-disciplinary nature of the book would be a valuable reference for academicians and research scientists, industrialists interested in modelling and simulation driven by computational technology.
The papers in this volume comprise the refereed proceedings of the Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA2008), in Beijing, China, 2008. The conference on the Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA 2008) is cooperatively sponsored and organized by the China Agricultural University (CAU), the National Engineering Research Center for Information Technology in Agriculture (NERCITA), the Chinese Society of Agricultural Engineering (CSAE) , International Federation for Information Processing (IFIP), Beijing Society for Information Technology in Agriculture, China and Beijing Research Center for Agro-products Test and Farmland Inspection, China. The related departments of China's central government bodies like: Ministry of Science and Technology, Ministry of Industry and Information Technology, Ministry of Education and the Beijing Municipal Natural Science Foundation, Beijing Academy of Agricultural and Forestry Sciences, etc. have greatly contributed and supported to this event. The conference is as good platform to bring together scientists and researchers, agronomists and information engineers, extension servers and entrepreneurs from a range of disciplines concerned with impact of Information technology for sustainable agriculture and rural development. The representatives of all the supporting organizations, a group of invited speakers, experts and researchers from more than 15 countries, such as: the Netherlands, Spain, Portugal, Mexico, Germany, Greece, Australia, Estonia, Japan, Korea, India, Iran, Nigeria, Brazil, China, etc.
Recent trends in the fashion market (including an impressive increase in the number of new collections, product assortments and variants, and the emerging mass-customization model) dictate the need for a new approach. "Transforming Clothing Production into a Demand-Driven, Knowledge-Based, High-Tech Industry" discusses the ramifications of such an approach, which must lead to a drastic shortening of the whole cycle from conception to production and retail, as well as a shift from a labor-intensive to a technology- and knowledge-intensive clothing manufacturing industry. "Transforming Clothing Production into a Demand-Driven, Knowledge-Based, High-Tech Industry" is a collection of short papers from prominent researchers involved with the LEAPFROG (Leadership for European Apparel Production From Research along Original Guidelines) initiative. LEAPFROG proposes a revolutionary industrial paradigm based on research results in scientific-technological fields.
This book focuses on the problem of responsibility voids: these are cases where responsibility for a morally undesirable outcome cannot be attributed to any of the involved agents. Responsibility voids are thought to occur in collective decision-making and in the context of artificial intelligent systems. In these cases, philosophers worry that there is a shortfall of moral responsibility. In particular, such voids are often assumed to justify a notion of collective responsibility that cannot be reduced to individual responsibility. One of the aims of the book is to study how collective responsibility and joint action relate to individual responsibility and individual actions. The book offers a unifying framework for modelling moral responsibility by drawing from modal logic and game theory. The book investigates the possibility and scope of the problem of responsibility voids. One of its characteristics is its pluralistic perspective on moral responsibility: in contrast to giving a unique and all-encompassing definition of it, the book makes progress by spelling out and modelling several conceptions of moral responsibility. One of the appealing features of the book is that a relatively small range of models is used to investigate a variety of conceptions of moral responsibility. The unifying framework can thus be used to characterize the conditions under which responsibility voids are ruled out.
This book presents new results on applications of geometric algebra. The time when researchers and engineers were starting to realize the potential of quaternions for - plications in electrical, mechanic, and control engineering passed a long time ago. Since the publication of Space-Time Algebra by David Hestenes (1966) and Clifford Algebra to Geometric Calculus: A Uni?ed Language for Mathematics and Physics by David Hestenes and Garret Sobczyk (1984), consistent progress in the app- cations of geometric algebra has taken place. Particularly due to the great dev- opments in computer technology and the Internet, researchers have proposed new ideas and algorithms to tackle a variety of problems in the areas of computer science and engineering using the powerful language of geometric algebra. In this process, pioneer groups started the conference series entitled "Applications of Geometric Algebra in Computer Science and Engineering" (AGACSE) in order to promote the research activity in the domain of the application of geometric algebra. The ?rst conference, AGACSE'1999, organized by Eduardo Bayro-Corrochano and Garret Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contri- tions were published in Geometric Algebra with Applications in Science and En- neering, Birkhauser, 2001. The second conference, ACACSE'2001, was held in the Engineering Department of the Cambridge University on 9-13 July 2001 and was organizedbyLeoDorst,ChrisDoran,andJoanLasenby. Thebestconferencecont- butions appeared as a book entitled Applications of Geometric Algebra in Computer Science and Engineering, Birkhauser, 2002. The third conference, AGACSE'2008, took place in August 2008 in Grimma, Leipzig, Germany.
This book provides a broad overview of essential features of subsurface environmental modelling at the science-policy interface, offering insights into the potential challenges in the field of subsurface flow and transport, as well as the corresponding computational modelling and its impact on the area of policy- and decision-making. The book is divided into two parts: Part I presents models, methods and software at the science-policy interface. Building on this, Part II illustrates the specifications using detailed case studies of subsurface environmental modelling. It also includes a systematic research overview and discusses the anthropogenic use of the subsurface, with a particular focus on energy-related technologies, such as carbon sequestration, geothermal technologies, fluid and energy storage, nuclear waste disposal, and unconventional oil and gas recovery.
In Decision Making and Problem Solving: A Practical Guide for Applied Research, the author utilizes traditional approaches, tools, and techniques adopted to solve current day-to-day, real-life problems. The book offers guidance in identifying and applying accurate methods for designing a strategy as well as implementing these strategies in the real world. The book includes realistic case studies and practical approaches that should help readers understand how the decision making occurs and can be applied to problem solving under deep uncertainty.
3D Mesh Processing and Character Animation focusses specifically on topics that are important in three-dimensional modelling, surface design and real-time character animation. It provides an in-depth coverage of data structures and popular methods used in geometry processing, keyframe and inverse kinematics animations and shader based processing of mesh objects. It also introduces two powerful and versatile libraries, OpenMesh and Assimp, and demonstrates their usefulness through implementations of a wide range of algorithms in mesh processing and character animation respectively. This Textbook is written for students at an advanced undergraduate or postgraduate level who are interested in the study and development of graphics algorithms for three-dimensional mesh modeling and analysis, and animations of rigged character models. The key topics covered in the book are mesh data structures for processing adjacency queries, simplification and subdivision algorithms, mesh parameterization methods, 3D mesh morphing, skeletal animation, motion capture data, scene graphs, quaternions, inverse kinematics algorithms, OpenGL-4 tessellation and geometry shaders, geometry processing and terrain rendering.
This book presents the state of the art in High Performance Computing on modern supercomputer architectures. It addresses trends in hardware and software development in general, as well as the future of High Performance Computing systems and heterogeneous architectures. The contributions cover a broad range of topics, from improved system management to Computational Fluid Dynamics, High Performance Data Analytics, and novel mathematical approaches for large-scale systems. In addition, they explore innovative fields like coupled multi-physics and multi-scale simulations. All contributions are based on selected papers presented at the 26th and 28th Workshops on Sustained Simulation Performance, held at the High Performance Computing Center, University of Stuttgart, Germany, in October 2017 and 2018, and the 27th and 29th Workshops on Sustained Simulation Performance, held at the Cyberscience Center, Tohoku University, Japan, in March 2018 and 2019.
This book is a compilation of advanced research and applications on robotic item picking and warehouse automation for e-commerce applications. The works in this book are based on results that came out of the Amazon Robotics Challenge from 2015-2017, which focused on fully automated item picking in a warehouse setting, a topic that has been assumed too complicated to solve or has been reduced to a more tractable form of bin picking or single-item table top picking. The book's contributions reveal some of the top solutions presented from the 50 participant teams. Each solution works to address the time-constraint, accuracy, complexity, and other difficulties that come with warehouse item picking. The book covers topics such as grasping and gripper design, vision and other forms of sensing, actuation and robot design, motion planning, optimization, machine learning and artificial intelligence, software engineering, and system integration, among others. Through this book, the authors describe how robot systems are built from the ground up to do a specific task, in this case, item picking in a warehouse setting. The compiled works come from the best robotics research institutions and companies globally.
This book reports on the latest advances in using BIM modelling to achieve the semantic enrichment of objects, allowing them to be used both as multidimensional databases - as comprehensive sources of information for finalizing various types of documentation in the building industry - and as modelling tools for the construction of virtual environments. Having advanced to a new stage of development, BIM modelling is now being applied in a range of increasingly complex contexts, and for various new purposes. This book examines the role that virtual reality and related technologies such as AI and IoT can play in preserving and disseminating our cultural heritage and built environment.
This book is concerned exclusively with discrete-time queues and their applications to the performance modeling of communication and computer networks. Since most modern networks operate on the basis of time slotting, and transmit information in fixed length (packets or cells), it thus becomes natural to model such networks in discrete-time by associating a time slot in a physical network with the unit time in the corresponding discrete-time model. The book shows how, in this way, very accurate models that faithfully reproduce the stochastic behaviour of a communication or computer network can be constructed. The treatment is self contained, and progresses from basic probability theory and discrete-time queueing networks. These latter are applied to model the performance of numerous wide area satellite networks and local area networks, ranging in complexity from simple Aloha schemes to the timed token protocol of the FDDI network. The main objective of this book is to present a unified method for modeling any network access protocol as a discrete-time queueing network and t develop efficient solution techniques for these models. A significant number of the models and their solutions which are included have not previously appeared in the open literature. The text should prove useful to practitioners and researchers concerned with communication and computer network performance modeling, or anyone wanting a sound understanding of the application of discrete-time technique to this subject area. |
You may like...
Recent Advances in Numerical Simulations
Francisco Bulnes, Jan Peter Hessling
Hardcover
R3,114
Discovery Miles 31 140
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
Digital Manufacturing - The…
Chandrakant D. Patel, Chun-Hsien Chen
Paperback
R4,567
Discovery Miles 45 670
|