![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This contributed volume contains the research results of the priority programme (PP) 1480 "Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes", funded by the German Research Society (DFG). The topical focus of this programme is the simulation-based prediction and compensation of thermally induced workpiece deviations and subsurface damage effects. The approach to the topic is genuinely interdisciplinary, covering all relevant machining operations such as turning, milling, drilling and grinding. The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.
This textbook provides a comprehensive introduction to probability and stochastic processes, and shows how these subjects may be applied in computer performance modeling. The author's aim is to derive probability theory in a way that highlights the complementary nature of its formal, intuitive, and applicative aspects while illustrating how the theory is applied in a variety of settings. Readers are assumed to be familiar with elementary linear algebra and calculus, including being conversant with limits, but otherwise, this book provides a self-contained approach suitable for graduate or advanced undergraduate students. The first half of the book covers the basic concepts of probability, including combinatorics, expectation, random variables, and fundamental theorems. In the second half of the book, the reader is introduced to stochastic processes. Subjects covered include renewal processes, queueing theory, Markov processes, matrix geometric techniques, reversibility, and networks of queues. Examples and applications are drawn from problems in computer performance modeling. Throughout, large numbers of exercises of varying degrees of difficulty will help to secure a reader's understanding of these important and fascinating subjects.
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter.
This book is the fourth in a multidisciplinary series which brings together leading researchers in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health) to present their perspective on advances in their own specific fields, and to generate a genuinely interdisciplinary collaboration that transcends parochial subject-matter boundaries. All contributions are carefully edited, peer-reviewed, reasonably self-contained, and pedagogically crafted for a multidisciplinary readership. Contributions are drawn from a variety of fields including mathematics, statistics, game theory and behavioral sciences, biomathematics and physical chemistry, computer science and human-centered computing. This volume is dedicated to Professor Christiane Rousseau, whose work inspires the STEAM-H series, in recognition of her passion for the mathematical sciences and her on-going initiative, the Mathematics of Planet Earth paradigm of interdisciplinarity. The volume's primary goal is to enhance interdisciplinary understanding between these areas of research by showing how new advances in a particular field can be relevant to open problems in another and how many disciplines contribute to a better understanding of relevant issues at the interface of mathematics and the sciences. The main emphasis is on important methods, research directions and applications of analysis within and beyond each field. As such, the volume aims to foster student interest and participation in the STEAM-H domain, as well as promote interdisciplinary research collaborations. The volume is valuable as a reference of choice and a source of inspiration for a broad spectrum of scientists, mathematicians, research students and postdoctoral fellows.
Changes and additions are sprinkled throughout. Among the significant new features are: * Markov-chain simulation (Sections 1. 3, 2. 6, 3. 6, 4. 3, 5. 4. 5, and 5. 5); * gradient estimation (Sections 1. 6, 2. 5, and 4. 9); * better handling of asynchronous observations (Sections 3. 3 and 3. 6); * radically updated treatment of indirect estimation (Section 3. 3); * new section on standardized time series (Section 3. 8); * better way to generate random integers (Section 6. 7. 1) and fractions (Appendix L, program UNIFL); * thirty-seven new problems plus improvements of old problems. Helpful comments by Peter Glynn, Barry Nelson, Lee Schruben, and Pierre Trudeau stimulated several changes. Our new random integer routine extends ideas of Aarni Perko. Our new random fraction routine implements Pierre L'Ecuyer's recommended composite generator and provides seeds to produce disjoint streams. We thank Springer-Verlag and its late editor, Walter Kaufmann-Bilhler, for inviting us to update the book for its second edition. Working with them has been a pleasure. Denise St-Michel again contributed invaluable text-editing assistance. Preface to the First Edition Simulation means driving a model of a system with suitable inputs and observing the corresponding outputs. It is widely applied in engineering, in business, and in the physical and social sciences.
1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films triggered widespread use of floating mulch. Table 1.1. The use a/plastic mulch in the world (after Jouet, 2001).
This book contains contributions presented during the international conference on Model-Based Reasoning (MBR012), held on June 21-23 in Sestri Levante, Italy. Interdisciplinary researchers discuss in this volume how scientific cognition and other kinds of cognition make use of models, abduction, and explanatory reasoning in order to produce important or creative changes in theories and concepts. Some of the contributions analyzed the problem of model-based reasoning in technology and stressed the issues of scientific and technological innovation. The book is divided in three main parts: models, mental models, representations; abduction, problem solving and practical reasoning; historical, epistemological and technological issues. The volume is based on the papers that were presented at the international "
This book presents the state of the art in high-performance computing and simulation on modern supercomputer architectures. It covers trends in hardware and software development in general and the future of high-performance systems and heterogeneous architectures in particular. The application-related contributions cover computational fluid dynamics, material science, medical applications and climate research; innovative fields such as coupled multi-physics and multi-scale simulations are highlighted. All papers were chosen from presentations given at the 18th Workshop on Sustained Simulation Performance held at the HLRS, University of Stuttgart, Germany in October 2013 and subsequent Workshop of the same name held at Tohoku University in March 2014.
The field of minimally invasive surgery (MIS) has now taken centre stage in modern clinical practice. With ever changing technologies in the field of MIS, such as robotics, there is now the need to train the surgeon to the next degree. Training by simulation, whether virtual, hybrid, or real, allows the surgeon to rehearse, learn, improve or maintain their skills in a safe and stress free environment. "Simulation Training in Laparoscopy and Robotic Surgery" gives a true insight into the latest educational and learning techniques for new technologies in surgery. Written by an international team of experts, this illustrated text provides advice on specialised team training, non technical skills and simulation. "Simulation Training in Laparoscopy and Robotic Surgery" is an important training aide for surgeons and residents interested in developing skills in this field. "
This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems modeling.
Sir Francis Crick would undoubtedly be at the front of the line ordering this fascinating book. Being one of the discoverers of DNA, he would be amazed at how his work has been applied to mankind's most important invention, the computer. In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines. It also includes laboratory-scale human-operated models of computation, as well as a description of the first experiment of DNA computation conducted by Adleman in 1994.
This book provides a vivid account of the early history of molecular simulation, a new frontier for our understanding of matter that was opened when the demands of theoretical physicists were met by the availability of the modern computers. Since their inception, electronic computers have enormously increased their performance, thus making possible the unprecedented technological revolution that characterizes our present times. This obvious technological advancement has brought with it a silent scientific revolution in the practice of theoretical physics. In particular, in the physics of matter it has opened up a direct route from the microscopic physical laws to observable phenomena. One can now study the time evolution of systems composed of millions of molecules, and simulate the behaviour of macroscopic materials and actually predict their properties. Molecular simulation has provided a new theoretical and conceptual tool that physicists could only dream of when the foundations of statistical mechanics were laid. Molecular simulation has undergone impressive development, both in the size of the scientific community involved and in the range and scope of its applications. It has become the ubiquitous workhorse for investigating the nature of complex condensed matter systems in physics, chemistry, materials and the life sciences. Yet these developments remain largely unknown outside the inner circles of practitioners, and they have so far never been described for a wider public. The main objective of this book is therefore to offer a reasonably comprehensive reconstruction of the early history of molecular simulation addressed to an audience of both scientists and interested non-scientists, describing the scientific and personal trajectories of the main protagonists and discussing the deep conceptual innovations that their work produced.
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
This text compiles research from a vibrant social simulation community of researchers who have developed unique and innovative approaches to social simulation.
Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.
Agent-based modeling/simulation is an emergent approach to the analysis of social and economic systems. It provides a bottom-up experimental method to be applied to social sciences such as economics, management, sociology, and politics as well as some engineering fields dealing with social activities. This book includes selected papers presented at the Fifth International Workshop on Agent-Based Approaches in Economic and Social Complex Systems held in Tokyo in 2007. It contains two invited papers given as the plenary and invited talks in the workshop and 21 papers presented in the six regular sessions: Organization and Management; Fundamentals of Agent-Based and Evolutionary Approaches; Production, Services and Urban Systems; Agent-Based Approaches to Social Systems; and Market and Economics I and II. The research presented here shows the state of the art in this rapidly growing field.
This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.
The problem of robotic and virtual interaction with physical objects has been the subject of research for many years in both the robotic manipulation and haptics communities. Both communities have focused much attention on human touch-based perception and manipulation, modelling contact between real or virtual hands and objects, or mechanism design. However, as a whole, these problems have not yet been addressed from a unified perspective. This edited book is the outcome of a well-attended workshop which brought together leading scholars from various branches of the robotics, virtual-reality, and human studies communities during the 2004 IEEE International Conference on Robotics and Automation. It covers some of the most challenging problems on the forefront of today 's research on physical interaction with real and virtual objects, with special emphasis on modelling contacts between objects, grasp planning algorithms, haptic perception, and advanced design of hands, devices and interfaces.
An introductory approach to the subject of large strains and large displacements in finite elements. "Large Strain Finite Element Method: A Practical Course," takes an introductory approach to the subject of large strains and large displacements in finite elements and starts from the basic concepts of finite strain deformability, including finite rotations and finite displacements. The necessary elements of vector analysis and tensorial calculus on the lines of modern understanding of the concept of tensor will also be introduced. This book explains how tensors and vectors can be described using matrices and also introduces different stress and strain tensors. Building on these, step by step finite element techniques for both hyper and hypo-elastic approach will be considered. Material models including isotropic, unisotropic, plastic and viscoplastic materials will be independently discussed to facilitate clarity and ease of learning. Elements of transient dynamics will also be covered and key explicit and iterative solvers including the direct numerical integration, relaxation techniques and conjugate gradient method will also be explored. This book contains a large number of easy to follow illustrations, examples and source code details that facilitate both reading and understanding. Takes an introductory approach to the subject of large strains and large displacements in finite elements. No prior knowledge of the subject is required.Discusses computational methods and algorithms to tackle large strains and teaches the basic knowledge required to be able to critically gauge the results of computational models.Contains a large number of easy to follow illustrations, examples and source code details.Accompanied by a website hosting code examples.
Researchers develop simulation models that emulate real-world situations. While these simulation models are simpler than the real situation, they are still quite complex and time consuming to develop. It is at this point that metamodeling can be used to help build a simulation study based on a complex model. A metamodel is a simpler, analytical model, auxiliary to the simulation model, which is used to better understand the more complex model, to test hypotheses about it, and provide a framework for improving the simulation study. The use of metamodels allows the researcher to work with a set of mathematical functions and analytical techniques to test simulations without the costly running and re-running of complex computer programs. In addition, metamodels have other advantages, and as a result they are being used in a variety of ways: model simplification, optimization, model interpretation, generalization to other models of similar systems, efficient sensitivity analysis, and the use of the metamodel's mathematical functions to answer questions about different variables within a simulation study.
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm optimization, artificial immune systems, artificial life, genetic programming, etc. It emphasises the initiative ideas of the algorithm, contains discussions in the contexts, and suggests further readings and possible research projects. All the methods form a pedagogical way to make EAs easy and interesting. This textbook also introduces the applications of EAs as many as possible. At least one real-life application is introduced by the end of almost every chapter. The authors focus on the kernel part of applications, such as how to model real-life problems, how to encode and decode the individuals, how to design effective search operators according to the chromosome structures, etc. This textbook adopts pedagogical ways of making EAs easy and interesting. Its methods include an introduction at the beginning of each chapter, emphasising the initiative, discussions in the contexts, summaries at the end of every chapter, suggested further reading, exercises, and possible research projects. Introduction to Evolutionary Algorithms will enable students to: establish a strong background on evolutionary algorithms; appreciate the cutting edge of EAs; perform their own research projects by simulating the application introduced in the book; and apply their intuitive ideas to academic search. This book is aimed at senior undergraduate students or first-year graduate students as a textbook or self-study material."
In the last decade parallel computing has been put forward as the only computational answer to the increasing computational needs arising from very large and complex fluid dynamic problems. Considerable efforts are being made to use parallel computers efficiently to solve several fluid dynamic problems originating in aerospace, climate modelling and environmental applications. Parallel CFD Conferences are international and aim to increase discussion among researchers worldwide. Topics covered in this particular book include typical CFD areas such as turbulence, Navier-Stokes and Euler solvers, reactive flows, with a good balance between both university and industrial applications. In addition, other applications making extensive use of CFD such as climate modelling and environmental applications are also included. Anyone involved in the challenging field of Parallel Computational Fluid Dynamics will find this volume useful in their daily work.
When managers and ecologists need to make decisions about the environment, they use models to simulate the dynamic systems that interest them. All management decisions affect certain landscapes over time, and those landscapes are composed of intricate webs of dynamic processes that need to be considered in relation to each other. With widespread use of Geographic Information Systems (GIS), there is a growing need for complex models ncorporating an increasing amount of data. The open-source Spatial Modeling Environment (SME) was developed to build upon common modeling software, such as STELLA (R), and Powersim (R), among others, to create, run, analyze, and present spatial models of ecosystems, watersheds, populations, and landscapes. In this book, the creators of the Spatial Modeling Environment discuss and illustrate the uses of SME as a modeling tool for all kinds of complex spatial systems. The authors demonstrate the entire process of spatial modeling, beginning with the conceptual design, continuing through formal implementation and analysis, and finally with the interpretation and presentation of the results. A variety of applications and case studies address particular types of ecological and management problems and help to identify potential problems for modelers. Researchers and students interested in spatial modeling will learn how to simulate the complex dynamics of landscapes. Managers and decision makers will acquire tools for predicting changes in landscapes while learning about both the possibilities and the limitations of simulation models. The enclosed CD contains SME, color illustrations and models and data from the examples in the book.
This book offers a comprehensive introduction to Subdivision Surface Modeling Technology focusing not only on fundamental theories but also on practical applications. It furthers readers' understanding of the contacts between spline surfaces and subdivision surfaces, enabling them to master the Subdivision Surface Modeling Technology for analyzing subdivision surfaces. Subdivision surface modeling is a popular technology in the field of computer aided design (CAD) and computer graphics (CG) thanks to its ability to model meshes of any topology. The book also discusses some typical Subdivision Surface Modeling Technologies, such as interpolation, fitting, fairing, intersection, as well as trimming and interactive editing. It is a valuable tool, enabling readers to grasp the main technologies of subdivision surface modeling and use them in software development, which in turn leads to a better understanding of CAD/CG software operations. |
You may like...
Pricing Decisions in the Euro Area - How…
Silvia Fabiani, Claire Loupias, …
Hardcover
R2,160
Discovery Miles 21 600
Academic Writing in a Second Language…
Diane Belcher, George Braine
Hardcover
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Spatial Econometric Interaction…
Roberto Patuelli, Giuseppe Arbia
Hardcover
R5,208
Discovery Miles 52 080
Design and Analysis of Time Series…
Richard McCleary, David McDowall, …
Hardcover
R3,286
Discovery Miles 32 860
Linear Models And Regression With R: An…
Debasis Sengupta, S. Rao Jammalamadaka
Paperback
R1,782
Discovery Miles 17 820
Introduction to Computational Economics…
Hans Fehr, Fabian Kindermann
Hardcover
R4,258
Discovery Miles 42 580
Geographic Data Science with Python
Sergio Rey, Dani Arribas-Bel, …
Hardcover
R4,206
Discovery Miles 42 060
Practical Composition - Exercises for…
Russell Brickey, Laura L. Beadling, …
Paperback
|