![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This book presents a coherent description of the theoretical and practical aspects of Coloured Petri Nets (CP-nets or CPN). It shows how CP-nets have been de veloped - from being a promising theoretical model to being a full-fledged lan guage for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and/or com puters communicate by means of some more or less formal rules). The book contains the formal definition of CP-nets and the mathematical theory behind their analysis methods. However, it has been the intention to write the book in such a way that it also becomes attractive to readers who are more interested in applications than the underlying mathematics. This means that a large part of the book is written in a style which is closer to an engineering textbook (or a users' manual) than it is to a typical textbook in theoretical computer science. The book consists of three separate volumes. The first volume defines the net model (i. e. , hierarchical CP-nets) and the basic concepts (e. g. , the different behavioural properties such as deadlocks, fair ness and home markings). It gives a detailed presentation of many small exam ples and a brief overview of some industrial applications. It introduces the for mal analysis methods. Finally, it contains a description of a set of CPN tools which support the practical use of CP-nets.
This book presents cutting-edge work on real-time modelling and processing, a highly active research field in both the research and industrial domains. Going beyond conventional real-time systems, major efforts are required to develop accurate and computational efficient real-time modelling algorithms and design automation tools that reflect the technological advances in high-speed and ultra-low-power transceiver communication architectures based on nanoscale devices. The book addresses basic and more advanced topics, such as I/O buffer circuits for ensuring reliable chip-to-chip communication, I/O buffer behavioural modelling, multiport empirical models for memory interfaces, compact behavioural modelling for memristive devices, and resource reservation modelling for distributed embedded systems. The respective chapters detail new research findings, new models, algorithms, implementations and simulations of the above-mentioned topics. As such, the book will help both graduate students and researchers understand the latest research into real-time modelling and processing.
As the use and relevance of robotics for countless scientific purposes grows all the time, research into the many diverse elements of the subject becomes ever more important and in demand. This volume examines in depth the most topical, complex issues of modelling and identification in robotics. The book is divided into three main parts. The !first part is devoted to robot dynamics modelling and identification of robot and load parameters, incorporating friction torques, discussing identification schemes, and presenting simulations and experiment al results of robot and load dynamic parameters identification. A general concept of robot programming language for research and educational purposes is examined and there is a detailed outline of its basic structures along with hardware requirements, which both constitute an open robot controller architecture. Finally a hybrid controller is derived, and several experimental results of this system are outlined. This impressive discussion of the topic covers both the theoretical and practical, illustrated throughout by examples and experimental results, and will be of value to anyone researching or practising within the field of robotics, automation and system i dentification or to control engineers.
This monograph provides comprehensive guidelines on the current and future trends of innovative simulation systems. In particular, their important components, such as augmented reality and unmanned vehicles are presented. The book consists of three parts. Each part presents good practices, new methods, concepts of systems and new algorithms. Presented challenges and solutions are the results of research and conducted by the contributing authors. The book describes and evaluates the current state of knowledge in the field of innovative simulation systems. Throughout the chapters there are presented current issues and concepts of systems, technology, equipment, tools, research challenges and current, past and future applications of simulation systems. The book is addressed to a wide audience: academic staff, representatives of research institutions, employees of companies and government agencies as well as students and graduates of technical universities in the country and abroad. The book can be a valuable source of information for constructors and developers of innovative simulation systems and their components. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision or data fusion can find many valuable suggestions and solutions.
This book deals with the analysis, the design and the implementation of the mechatronic systems. Classical and modern tools are developed for the analysis and the design for such systems. Robust control, H-Infinity and guaranteed cost control theory are also used for analysis and design of mechatronic systems. Different controller such as state feedback, static output feedback and dynamic output feedback controllers are used to stabilize mechatronic systems. Heuristic algorithms are provided to solve the design of the classical controller such as PID, phase lead, phase lag and phase lead-lag controllers while linear matrix inequalities (LMI) algorithms are provided for finding solutions to the state feedback, static output feedback and dynamic output feedback controllers. The theory presented in the different chapters of the volume is applied to numerical examples to show the usefulness of the theoretical results. Some case studies are also provided to show how the developed concepts apply for real system. Emphasis is also put on the implementation in real-time for some real systems that we have developed in our mechatronic laboratory and all the detail is provided to give an idea to the reader how to implement its own mechatronic system. Mechatronics Systems: Analysis, Design and Implementation is an excellent textbook for undergraduate and graduate students in mechatronic system and control theory and as a reference for academic researchers in control or mathematics with interest in control theory. The reader should have completed first-year graduate courses in control theory, linear algebra, and linear systems. It will also be of great value to engineers practising in fields where the systems can be modeled by linear time invariant systems.
Rapid Modelling and Quick Response presents new research developments in the fields of rapid modelling and quick response linked with performance improvements (based on lead time reduction, etc., as well as financial performance measures). The papers and teaching cases in this book were presented at the second Rapid Modelling Conference: "Quick Response - Intersection of Theory and Practice." The main focus of this collection is the transfer of knowledge from theory to practice, providing the theoretical foundations for successful performance improvement. This conference volume challenges the traditional notions of rapid modelling, and offers valuable contributions to the scientific communities of operations management, production management, supply chain management, industrial engineering and operations research. Rapid Modelling and Quick Response will give the interested reader (researcher, as well as practitioner) a good overview of new developments in this field.
This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiplexing (OFDM) transmissions that are not limited to LTE-A. One chapter exclusively deals with the newest tool, the uplink (UL) link level simulator, and presents cutting-edge results. In turn, Part Two focuses on system-level simulations. From early on, system-level simulations have been in high demand, as people are naturally seeking answers when scenarios with numerous base stations and hundreds of users are investigated. This part not only explains how mathematical abstraction can be employed to speed up simulations by several hundred times without sacrificing precision, but also illustrates new theories on how to abstract large urban heterogeneous networks with indoor small cells. It also reports on advanced applications such as train and car transmissions to demonstrate the tools' capabilities.
This book contains keynote lectures and full papers presented at the International Symposium on Computational Modelling of Objects Represented in Images (CompIMAGE), held in Coimbra, Portugal, on 20-21 October 2006. International contributions from nineteen countries provide a comprehensive coverage of the current state-of-the-art in the fields of: - Image Processing and Analysis; - Image Segmentation; - Data Interpolation; - Registration, Acquisition and Compression; - 3D Reconstruction; - Objects Tracking; - Motion and Deformation Analysis; - Objects Simulation; - Medical Imaging; - Computational Bioimaging and Visualization. Related techniques also covered in this book include the finite element method, modal analyses, stochastic methods, principal and independent components analyses and distribution models. Computational Modelling of Objects Represented in Images will be useful to academics, researchers and professionals in Computational Vision (image processing and analysis), Computer Sciences, and Computational Mechanics.
The chapters of this book summarize the lectures delivered du ring the NATO Advanced Study Institute (ASI) on Computational Methods in Mechanisms, that took place in the Sts. Constantin and Elena Resort, near Varna, on the Bulgarian Coast of the Black Sea, June 16-28, 1997. The purpose of the ASI was to bring together leading researchers in the area of mechanical systems at large, with special emphasis in the computational issues around their analysis, synthesis, and optimization, during two weeks of lectures and discussion. A total of 89 participants from 23 count ries played an active role during the lectures and sessions of contributed papers. Many of the latter are being currently reviewed for publication in specialized journals. The subject of the book is mechanical systems, Le., systems composed of rigid and flexible bodies, coupled by mechanical means so as to constrain their various bodies in a goal-oriented manner, usually driven under computer con trol. Applications of the discipline are thus of the most varied nature, ranging from transportation systems to biomedical devices. U nder normal operation conditions, the constitutive bodies of a mechanical system can be consid ered to be rigid, the rigidity property then easing dramatically the analysis of the kinematics and dynamics of the system at hand. Examples of these systems are the suspension of a terrestrial vehicle negotiating a curve at speeds within the allowed or recommended limits and the links of multiaxis industrial robots performing conventional pick-and-place operations."
This book contains 24 technical papers presented at the fourth edition of the Advances in Architectural Geometry conference, AAG 2014, held in London, England, September 2014. It offers engineers, mathematicians, designers, and contractors insight into the efficient design, analysis, and manufacture of complex shapes, which will help open up new horizons for architecture. The book examines geometric aspects involved in architectural design, ranging from initial conception to final fabrication. It focuses on four key topics: applied geometry, architecture, computational design, and also practice in the form of case studies. In addition, the book also features algorithms, proposed implementation, experimental results, and illustrations. Overall, the book presents both theoretical and practical work linked to new geometrical developments in architecture. It gathers the diverse components of the contemporary architectural tendencies that push the building envelope towards free form in order to respond to multiple current design challenges. With its introduction of novel computational algorithms and tools, this book will prove an ideal resource to both newcomers to the field as well as advanced practitioners.
These Proceedings of the Third International Workshop introduce research results in the areas of information integration, development of GIS and GIS-applications for a wide spectrum of information systems varying considerably in purpose and scale. The new class of GIS - intelligent GIS - is considered, including principles of their building and programming technologies. Special attention is drawn to the development of ontologies and their use in GIS and GIS-applications.
Starting with novel algorithms for optimally updating bounding volume hierarchies of objects undergoing arbitrary deformations, the author presents a new data structure that allows, for the first time, the computation of the penetration volume. The penetration volume is related to the water displacement of the overlapping region, and thus corresponds to a physically motivated and continuous force. The practicability of the approaches used is shown by realizing new applications in the field of robotics and haptics, including a user study that evaluates the influence of the degrees of freedom in complex haptic interactions. New Geometric Data Structures for Collision Detection and Haptics closes by proposing an open source benchmarking suite that evaluates both the performance and the quality of the collision response in order to guarantee a fair comparison of different collision detection algorithms. Required in the fields of computer graphics, physically-based simulations, computer animations, robotics and haptics, collision detection is a fundamental problem that arises every time we interact with virtual objects. Some of the open challenges associated with collision detection include the handling of deformable objects, the stable computation of physically-plausible contact information, and the extremely high frequencies that are required for haptic rendering. New Geometric Data Structures for Collision Detection and Haptics presents new solutions to all of these challenges, and will prove to be a valuable resource for researchers and practitioners of collision detection in the haptics, robotics and computer graphics and animation domains.
Since the establishment of the CAAD Futures Foundation in 1985, CAAD experts from all over the world meet every two years to present and document the state of the art of research in Computer Aided Architectural Design. Together, the series provides a good record of the evolving state of research in this area over the last fourteen years. The Proceedings this year is the eighth in the series. The conference held at Georgia Institute of Technology in Atlanta, Georgia, includes twenty-five papers presenting new and exciting results and capabilities in areas such as computer graphics, building modeling, digital sketching and drawing systems, Web-based collaboration and information exchange. An overall reading shows that computers in architecture is still a young field, with many exciting results emerging out of both greater understanding of the human processes and information processing needed to support design and also the continuously expanding capabilities of digital technology.
This book provides an overview of recent developments and applications of the Land Use Scanner model, which has been used in spatial planning for well over a decade. Internationally recognized as among the best of its kind, this versatile model can be applied at a national level for trend extrapolation, scenario studies and optimization, yet can also be employed in a smaller-scale regional context, as demonstrated by the assortment of regional case studies included in the book. Alongside these practical examples from the Netherlands, readers will find discussion of more theoretical aspects of land-use models as well as an assessment of various studies that aim to develop the Land-Use Scanner model further. Spanning the divide between the abstractions of land-use modelling and the imperatives of policy making, this is a cutting-edge account of the way in which the Land-Use Scanner approach is able to interrogate a spectrum of issues that range from climate change to transportation efficiency. Aimed at planners, researchers and policy makers who need to stay abreast of the latest advances in land-use modelling techniques in the context of planning practice, the book guides the reader through the applications supported by current instrumentation. It affords the opportunity for a wide readership to benefit from the extensive and acknowledged expertise of Dutch planners, who have originated a host of much-used models."
FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.
This book presents a broad review of state-of-the-art 3D video production technologies and applications. The text opens with a concise introduction to the field, before examining the design and calibration methods for multi-view camera systems, including practical implementation technologies. A range of algorithms are then described for producing 3D video from video data. A selection of 3D video applications are also demonstrated. Features: describes real-time synchronized multi-view video capture, and object tracking with a group of active cameras; discusses geometric and photometric camera calibration, and 3D video studio design with active cameras; examines 3D shape and motion reconstruction, texture mapping and image rendering, and lighting environment estimation; demonstrates attractive 3D visualization, visual contents analysis and editing, 3D body action analysis, and data compression; highlights the remaining challenges and the exciting avenues for future research in 3D video technology.
This book presents recent developments is the field of human aspects in Ambient Intelligence. This field, and the associated workshop series, addresses multidisciplinary aspects of AmI with human-directed disciplines such as psychology, social science, neuroscience and biomedical sciences. The aim of the workshop series is to get researchers together from these human-directed disciplines or working on cross connections of AmI with these disciplines. The focus is on the use of knowledge from these disciplines in AmI applications, in order to support humans in their daily living in medical, psychological and social respects. The book plays important role to get modellers in the psychological, neurological, social or biomedical disciplines interested in AmI as a high-potential application area for their models. From the other side, the book may make researchers in Computer Science and Artificial and Ambient Intelligence more aware of the possibilities to incorporate more substantial knowledge from the psychological, neurological, social and biomedical disciplines in AmI architectures and applications.
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
This book seeks to arrive at a better understanding of the relationships between the objective and subjective aspects of time. It discusses the existence of fluent time, a controversial concept in many areas, from philosophy to physics. Fluent time is understood as directional time with a past, a present and a future. We experience fluent time in our lives and we adopt a temporal perspective in our ways of knowing and acting. Nevertheless, the existence of fluent time has been debated for both philosophical and scientific reasons, thus creating a rift between the subjective and objective aspects of time. Starting from the basic notion of points of view, or perspectives, this book explores the relationships between objective or external time, as it has been conceptualized by science, and subjective or internal time, which is involved in our lived experiences. It establishes a general framework encompassing the nature, structure and mode of existence of points of view, in which the objective and subjective aspects of time can be integrated. The book mainly addresses researchers and postgraduates in philosophy and logic. Additionally, it offers inspiration for physicists and computer scientists involved in the modeling and simulation of complex behaviors for which the representation of internal time should be considered together with the notion of objective, external time.
This book presents technologies and solutions related to the test and launch control of rockets and other vehicles, and offers the first comprehensive and systematic introduction to the contributions of the Chinese Long March (Chang Zheng in Chinese, or abbreviated as CZ) rockets in this field. Moreover, it discusses the role of this technology in responsive, reliable, and economical access to space, which is essential for the competitiveness of rockets. The need for rapid development of the aerospace industry for both governmental and commercial projects is addressed. This book is a valuable reference resource for practitioners, and many examples and resources are included, not only from Chinese rockets but also from many other vehicles. It covers guidelines, technologies, and solutions on testing and launch control before rocket takeoff, covering equipment-level testing, system-level testing, simulation tests, etc.
This book is a collection of extended papers based on presentations given during the SIMHYDRO 2014 conference, held in Sophia Antipolis in June 2014. It focuses on the modeling and simulation of fast hydraulic transients, on 3D modeling, and on uncertainties and multiphase flows. The book explores both the limitations and performance of current models and presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It addresses the interests of practitioners, stakeholders, researchers and engineers active in this field.
This book illustrates the current work of leading multilevel
modeling (MLM) researchers from around the world. The book's goal is to critically examine the real problems that
occur when trying to use MLMs in applied research, such as power,
experimental design, and model violations. This presentation of
cutting-edge work and statistical innovations in multilevel
modeling includes topics such as growth modeling, repeated measures
analysis, nonlinear modeling, outlier detection, and meta
analysis. This volume will be beneficial for researchers with advanced statistical training and extensive experience in applying multilevel models, especially in the areas of education; clinical intervention; social, developmental and health psychology, and other behavioral sciences; or as a supplement for an introductory graduate-level course.
In this book, the author's strong commitment to the multi-disciplinary field of regional science emerges to provide a unifying framework between spatial modelling traditions from quantitative geography and those from spatial economics, whereby each is enhanced. Starting with a detailed discussion of each field illustrated with numerical examples, the two traditions are brought together by either making the economic models probabilistic or transforming the objectives of the geographic models to reflect both utility theory and production theory. The ideas are applied to develop urban models of activity analysis, face-to-face contacts and housing supply, as well as regional models in the areas of input-output analysis, imperfect competition and interregional migration.
This book is intended for practitioners and applied researchers in remote sensing applications and also for graduate students in the field. This reference provides a surface scattering model covering the entire frequency axis instead of only high- or low-frequency models. The text includes extensive model behaviours and case studies and demonstrates the effectiveness of combining the models and neural networks to classify and retrieve terrain and rough surface parameters. |
You may like...
Advances in Principal Component Analysis
Fausto Pedro Garcia Marquez
Hardcover
R3,102
Discovery Miles 31 020
Numerical Modeling of Masonry and…
Bahman Ghiassi, Gabriele Milani
Paperback
R6,447
Discovery Miles 64 470
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
Digital Manufacturing - The…
Chandrakant D. Patel, Chun-Hsien Chen
Paperback
R4,567
Discovery Miles 45 670
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
|