![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Modelling and Control in Biomedical Systems (including Biological
Systems) was held in Reims, France, 20-22 August 2006. This
Symposium was organised by the University of Reims Champagne
Ardenne and the Societe de l Electricite, de l Electronique et des
TIC (SEE).
The objective of this publication is to comprehensively discuss the possibilities of producing steels with pre-determined attributes, demanded by the customer to fit exacting specifications. The information presented in the book has been designed to indicate the reasons for the expenses and to aid in the process of overcoming the difficulties and reducing the costs.
"Global Change Scenarios of the 21st Century" informs readers of
conceivable environmental changes in the next hundred years.
Integrated scenarios are used to communicate large amounts of
information about different aspects of the global environmental
system, together with society's role within this system. Uniquely,
the scenarios are generated by an integrated computer model, IMAGE
2.1, which enhances consistency and provides a framework for
linking environmental and social aspects of global change.
Process Modelling and simulation have proved to be extremely
successful engineering tools for the design and optimisation of
physical, chemical and biochemical processes. The use of simulation
has expanded rapidly over the last two decades because of the
availability of large high-speed computers and indeed has become
even more widespread with the rise of the desk-top PC resources now
available to nearly every engineer and student.
The latest volume in this influential series brings together topical and authoritative contributions from leading international professionals involved in the use of games and simulations. With contributors offering examples drawn from a wide variety of countries including the US, the UK, the Netherlands, Australia and Russia, the book provides a global perspective on a key topic.
Creativity has been integral to the development of the modern State, and yet it is becoming increasingly sidelined, especially as a result of the development of new machinic technologies including 3D printing. Arguing that inner creativity has been endangered by the rise of administrative regulation, James Griffin explores a number of reforms to ensure that upcoming regulations do take creativity into account. The State of Creativity examines how the State has become distanced from individual processes of creativity. This book investigates how the failure to incorporate creativity into administrative regulation is, in fact, adversely impacting the regulation of new technologies such as 3D and 4D printing and augmented reality, by focusing on issues concerning copyright and patents. This is an important read for intellectual property law scholars, as well as those studying computer science who wish to gain a more in-depth understanding of the current laws surrounding digital technologies such as 3D printing in our modern world. Legal practitioners wanting to remain abreast of developments surrounding 3D printing will also benefit from this book.
Digital Manufacturing: The Industrialization of "Art to Part" 3D Additive Printing explains everything needed to understand how recent advances in materials science, manufacturing engineering and digital design have integrated to create exciting new capabilities. Sections discuss relevant fundamentals in mechanical engineering and materials science and complex and practical topics in additive manufacturing, such as part manufacturing, all in the context of the modern digital design environment. Being successful in today's "art to part" cyber-physical manufacturing age requires a strong grounding in science and engineering fundamentals as well as knowledge of the latest techniques, all of which readers will find here. Every chapter is developed by leading specialists and based on first-hand experiences, capturing the essential knowledge readers need to solve problems related to digital manufacturing.
This guidance is designed to help those intending to use airborne laser scanning (ALS), also known as lidar, for archaeological survey. The aim is to help archaeologists, researchers and those who manage the historic environment to decide first, whether using lidar data will actually be beneficial in terms of their research aims, and second, how the data can be used effectively. The guidance will be most useful to those who have access to data that have already been commissioned, or are planning to commission lidar for a specific purpose. They also provide an introduction to data interpretation in order to separate archaeological and non-archaeological features. Although important themes are introduced, this guidance are not intended as a definitive explanation of the technique or the complexities of acquiring and processing the raw data, particularly as this is a still developing technology. This document is intended to complement 3D Laser Scanning for Heritage, which covers a wider range of uses of laser scanning for heritage purposes (Historic England 2018). This Guidance is a revision of The Light Fantastic: Using Airborne Lidar in Archaeological Survey published by English Heritage in 2010. The text has largely been maintained except for certain areas where major changes have occurred in the ensuing years. This is particularly true with regard to increased access to data and the wide range of visualisation techniques now available. The case studies have also been updated to reflect more recent survey activity and to include examples from outside Historic England.
Superlubricity - the state between sliding systems where friction is reduced to almost immeasurable amounts - holds great potential for improving both the economic and environmental credentials of moving mechanical systems. Research in this field has progressed tremendously in recent years, and there now exist several theoretical models, recognised techniques for computational simulations and interesting experimental evidence of superlubricity in practise. Superlubricity, Second Edition, presents an extensively revised and updated overview of these important developments, providing a comprehensive guide to the physical chemistry underpinning molecular mechanisms of friction and lubrication, current theoretical models used to explore and assess superlubricity, examples of its achievement in experimental systems, and discussion of potential future applications. Drawing on the extensive knowledge of its expert editors and global team of authors from across academia and industry, Superlubricity, Second Edition, is a great resource for all those with a need to understand, model or manipulate surface interactions for improved performance.
This guidance on Building Information Modelling for heritage (Historic BIM) offers guidance for owners, end-users and professionals in the fields of heritage and construction. By raising awareness of the potential advantages of a BIM approach, this guidance will help users successfully implement BIM in heritage projects. Historic BIM is, by definition, a multi-disciplinary process that requires the input and collaboration of professionals with very different skillsets. It is also a fast-developing field in terms of research, official guidance, standards and professional practice. This publication addresses the issues surrounding the production and use of BIM for history buildings, and provides information about guidance and standards available elsewhere for managing a building's entire life cycle effectively.
Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies.
Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters.
DHM and Posturography explores the body of knowledge and state-of-the-art in digital human modeling, along with its application in ergonomics and posturography. The book provides an industry first introductory and practitioner focused overview of human simulation tools, with detailed chapters describing elements of posture, postural interactions, and fields of application. Thus, DHM tools and a specific scientific/practical problem - the study of posture - are linked in a coherent framework. In addition, sections show how DHM interfaces with the most common physical devices for posture analysis. Case studies provide the applied knowledge necessary for practitioners to make informed decisions. Digital Human Modelling is the science of representing humans with their physical properties, characteristics and behaviors in computerized, virtual models. These models can be used standalone, or integrated with other computerized object design systems, to design or study designs, workplaces or products in their relationship with humans.
Computational Modeling in Bioengineering and Bioinformatics promotes complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems, and in the environment, public health, drug design, and so on. It provides a common platform by bridging these two very important and complementary disciplines into an interactive and attractive forum. Chapters cover biomechanics and bioimaging, biomedical decision support system, data mining, personalized diagnoses, bio-signal processing, protein structure prediction, tissue and cell engineering, biomedical image processing, analysis and visualization, high performance computing and sports bioengineering. The book's chapters are the result of many international projects in the area of bioengineering and bioinformatics done at the Research and Development Center for Bioengineering BioIRC and by the Faculty of Engineering at the University of Kragujevac, Serbia.
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
|
You may like...
SolidWorks Simulation 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,640
Discovery Miles 16 400
Chemical Modelling - Volume 17
Hilke Bahmann, Jean Christophe Tremblay
Hardcover
R11,222
Discovery Miles 112 220
Handbook of Research on Intelligent…
Anil Kumar, Manoj Kumar Dash, …
Hardcover
R6,912
Discovery Miles 69 120
Mechanical Behaviors of Carbon Nanotubes…
K.M. Liew, Yan Jianwei, …
Hardcover
Digital Image and Video Watermarking and…
Sudhakar Ramakrishnan
Hardcover
R2,552
Discovery Miles 25 520
|