![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.
Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.
Many breakthroughs in experimental devices, advanced software, as well as analytical methods for systems biology development have helped shape the way we study DNA, RNA and proteins, on the genomic, transcriptional, translational and posttranslational level. This book highlights the comprehensive topics that encompass systems biology with enormous progress in the development of genome sequencing, proteomic and metabolomic methods in designing and understanding biological systems. Topics covered in this book include fundamentals of modelling networks, circuits and pathways, spatial and multi cellular systems, image-driven systems biology, evolution, noise and decision-making in single cells, systems biology of disease and immunology, and personalized medicine. Special attention is paid to epigenomics, in particular environmental conditions that impact genetic background. The breadth of exciting new data towards discovering fundamental principles and direct application of epigenetics in agriculture is also described. The chapter "Deciphering the Universe of RNA Structures and Trans RNA-RNA Interactions of Transcriptomes in vivo - from Experimental Protocols to Computational Analyses" is available open access under a CC BY 4.0 license via link.springer.com.
Marking the 30th anniversary of the European Conference on Modelling and Simulation (ECMS), this inspirational text/reference reviews significant advances in the field of modelling and simulation, as well as key applications of simulation in other disciplines. The broad-ranging volume presents contributions from a varied selection of distinguished experts chosen from high-impact keynote speakers and best paper winners from the conference, including a Nobel Prize recipient, and the first president of the European Council for Modelling and Simulation (also abbreviated to ECMS). This authoritative book will be of great value to all researchers working in the field of modelling and simulation, in addition to scientists from other disciplines who make use of modelling and simulation approaches in their work.
This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and government organizations.
Parallel CFD 2000, the Twelfth in an International series of
meetings featuring computational fluid dynamics research on
parallel computers, was held May 22-25, 2000 in Trondheim, Norway.
Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales - including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces - bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.
The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single processes (such as groundwater flow) as well as coupled processes are presented. It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community.
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
This contributed volume, written by leading international researchers, reviews the latest developments of genetic programming (GP) and its key applications in solving current real world problems, such as energy conversion and management, financial analysis, engineering modeling and design, and software engineering, to name a few. Inspired by natural evolution, the use of GP has expanded significantly in the last decade in almost every area of science and engineering. Exploring applications in a variety of fields, the information in this volume can help optimize computer programs throughout the sciences. Taking a hands-on approach, this book provides an invaluable reference to practitioners, providing the necessary details required for a successful application of GP and its branches to challenging problems ranging from drought prediction to trading volatility. It also demonstrates the evolution of GP through major developments in GP studies and applications. It is suitable for advanced students who wish to use relevant book chapters as a basis to pursue further research in these areas, as well as experienced practitioners looking to apply GP to new areas. The book also offers valuable supplementary material for design courses and computation in engineering.
The "2019 DigitalFUTURES - The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)" provides an international platform for advanced scientific research papers on the digital technology of architectural design and construction. The themes of the papers include, but are not limited to, architectural theories, tools, methods and procedures in material intelligence, data intelligence; computational intelligence, and robotic intelligence.
This authoritative text/reference presents a review of the history, current status, and potential future directions of computational biology in molecular evolution. Gathering together the unique insights of an international selection of prestigious researchers, this must-read volume examines the latest developments in the field, the challenges that remain, and the new avenues emerging from the growing influx of sequence data. These viewpoints build upon the pioneering work of David Sankoff, one of the founding fathers of computational biology, and mark the 50th anniversary of his first scientific article. The broad spectrum of rich contributions in this essential collection will appeal to all computer scientists, mathematicians and biologists involved in comparative genomics, phylogenetics and related areas.
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.
Evolutionary models (e.g genetic algorithms, artificial life) are emerging as an important new tool for geographic information systems for a number of reasons. First, they are highly appropriate for modelling geographic phenomena; second, geographical problems are often spatially separate (broken down into logical or regional problems), and evolutionary algorithms can exploit this structure; and finally, the ability to store, mainipulate, and visualize spatial data has increased to the point that space-time attribute databases can be easily handled. This book is proposed to serve as a guide to the evolutionary modelling of spatial phenomena.
This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
This book presents research results of PowerWeb, TU Delft's consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University's knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.
Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB(r)/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB(r), OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.
This book disseminates the current trends among innovative and high-quality research regarding the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced industrial tools and techniques and their application in different fields. It presents a collection of theoretical, real-world and original research works in the field of applied industrial tools and techniques. The text goes beyond the state-of-the-art in the field of industrial and software engineering, listing successful applications and use cases of studies of new approaches, applications, methods, techniques for developing advanced industrial tools, methodologies and techniques and their application in different fields. The topics covered in this book are of interest to academics, researchers, students, stakeholders and consultants.
This book is the first to comprehensively cover research methods for building occupant behavior. As this is of growing importance for building design and for building performance optimization, the book aims to provide a sound scientific basis for experimental studies in this field. It introduces the reader to fundamental questions about the topic and unfolds the different fields related to occupant actions and comfort. This is followed by more general questions about developing an appropriate research method and experimental design. A comprehensive overview of sensors for monitoring environmental and also behavioral and action-related quantities helps to set up an experiment. In this context, different experimental environments and data collection methods (in-situ, laboratories, surveys) are introduced and discussed in terms of their suitability for the respective research question. Furthermore, data management and reporting is addressed. The book concludes with fundamental challenges in conducting occupant studies, with chapters on ground truth, ethics and privacy. |
You may like...
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
|