![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.
Developing Graphics Frameworks with Python and OpenGL shows you how to create software for rendering complete three-dimensional scenes. The authors explain the foundational theoretical concepts as well as the practical programming techniques that will enable you to create your own animated and interactive computer-generated worlds. You will learn how to combine the power of OpenGL, the most widely adopted cross-platform API for GPU programming, with the accessibility and versatility of the Python programming language. Topics you will explore include generating geometric shapes, transforming objects with matrices, applying image-based textures to surfaces, and lighting your scene. Advanced sections explain how to implement procedurally generated textures, postprocessing effects, and shadow mapping. In addition to the sophisticated graphics framework you will develop throughout this book, with the foundational knowledge you will gain, you will be able to adapt and extend the framework to achieve even more spectacular graphical results.
This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-conventional devices used in generation, transmission and distribution systems, discussing relevant assumptions and implications on performance assessment. This background is complemented with several guidelines for advanced use of DSL and DPL languages as well as for interfacing with other software packages, which is of great value for creating and performing different types of steady-state and dynamic performance simulation analysis. All employed test case studies are provided as supporting material to the reader to ease recreation of all examples presented in the book as well as to facilitate their use in other cases related to planning and operation studies. Providing an invaluable resource for the formal instruction of power system undergraduate/postgraduate students, this book is also a useful reference for engineers working in power system operation and planning.
Increase the photorealism of your 3d visualizations with enhanced toolsets of V-Ray 5 for 3ds Max 2020. The book is filled with colorful illustrations depicting step-by-step tutorials about the process of creating a photorealistic day-and-night exterior scene. Each tutorial includes a 3d project scene to guide users through the production and the post-production processes. The book begins with an overview of the best techniques to approach clients via emails, calls, meetings, and via social media. There are also key insights into the best practices of handling projects, pricing, contracts, invoices, the pre-production, production, and the post-production, to name but a few. Throughout the book, users are taken through VRayMtl functions such as Diffuse, Roughness, Reflect, Glossiness, Metalness, Refract, Index of Refraction (IOR), Abbe number, Fog color, Translucency, BRDF, Coat, Sheen, and Bump. Also, users will learn how to use procedural maps such as VRayBitmap, VRayTriplanarTex, Bricks, Metals, Carpaint, VRayDisplacementMod, VRayUVWRandomizer, VRayMultiSubTex, VRayPointCloudColor, VRayDirt, VRayAerialPersepective, VRayLightMtl, VRayMtlWrapper, VRayOverrideMtl, VRay2SidedMtl, VRayBlendMtl, and VRayEdgesTex. In addition, there are tips and tricks accompanied with videos highlighting how to create VR interactive apps using Verge 3d; how to create verified views; and how to use plug-ins and scripts such as Project Manager, Auto grid pivot point, GarageFarm, Zmapping, gobotree, and VIShopper. Finally, users will have a rare insight into all functionalities of a VRay camera, VRayLight objects, Render settings, Frame buffer, Global switches, IPR options, Bucket and Progressive image samplers, Image filters, Global DMC, Color mapping, Brute force global illumination, Light cache, Color management, Distributed rendering, Render elements, VRay image file format, VFB History settings, VFB Lens Effects, LightMix, Film tonemap, Hue/Saturation, Lookup Table, and much more. Key Features This book deals with real projects/3d scenes and delivers up-to-date V-Ray 5 functionalities and production workflows using 3ds Max 2020 This book has professional supporting files ready to open and explore This book details the meticulous step-by-step processes of creating jaw-dropping 3d renderings This book includes unrivaled in-depth coverage of V-Ray 5 for 3ds Max 2020 This book includes 3d rendering methodologies currently used by key industry players Author Jamie Cardoso is a renowned author, reviewer, computer artist, and technologist, with years of experience in creating state-of-the-art 3d photomontages, verified views, VR, AR, XR, MR, Stereos, and photorealistic interior and exterior visualizations for architects and designers.
Increase the photorealism of your 3d visualizations with enhanced toolsets of V-Ray 5 for 3ds Max 2020. The book is filled with colorful illustrations depicting step-by-step tutorials about the process of creating a photorealistic day-and-night exterior scene. Each tutorial includes a 3d project scene to guide users through the production and the post-production processes. The book begins with an overview of the best techniques to approach clients via emails, calls, meetings, and via social media. There are also key insights into the best practices of handling projects, pricing, contracts, invoices, the pre-production, production, and the post-production, to name but a few. Throughout the book, users are taken through VRayMtl functions such as Diffuse, Roughness, Reflect, Glossiness, Metalness, Refract, Index of Refraction (IOR), Abbe number, Fog color, Translucency, BRDF, Coat, Sheen, and Bump. Also, users will learn how to use procedural maps such as VRayBitmap, VRayTriplanarTex, Bricks, Metals, Carpaint, VRayDisplacementMod, VRayUVWRandomizer, VRayMultiSubTex, VRayPointCloudColor, VRayDirt, VRayAerialPersepective, VRayLightMtl, VRayMtlWrapper, VRayOverrideMtl, VRay2SidedMtl, VRayBlendMtl, and VRayEdgesTex. In addition, there are tips and tricks accompanied with videos highlighting how to create VR interactive apps using Verge 3d; how to create verified views; and how to use plug-ins and scripts such as Project Manager, Auto grid pivot point, GarageFarm, Zmapping, gobotree, and VIShopper. Finally, users will have a rare insight into all functionalities of a VRay camera, VRayLight objects, Render settings, Frame buffer, Global switches, IPR options, Bucket and Progressive image samplers, Image filters, Global DMC, Color mapping, Brute force global illumination, Light cache, Color management, Distributed rendering, Render elements, VRay image file format, VFB History settings, VFB Lens Effects, LightMix, Film tonemap, Hue/Saturation, Lookup Table, and much more. Key Features This book deals with real projects/3d scenes and delivers up-to-date V-Ray 5 functionalities and production workflows using 3ds Max 2020 This book has professional supporting files ready to open and explore This book details the meticulous step-by-step processes of creating jaw-dropping 3d renderings This book includes unrivaled in-depth coverage of V-Ray 5 for 3ds Max 2020 This book includes 3d rendering methodologies currently used by key industry players Author Jamie Cardoso is a renowned author, reviewer, computer artist, and technologist, with years of experience in creating state-of-the-art 3d photomontages, verified views, VR, AR, XR, MR, Stereos, and photorealistic interior and exterior visualizations for architects and designers.
This book provides a comprehensive overview of potential opportunities and the business value position related to implementing physics-based real-time simulation to production. The objective of real-time simulation is to provide value for all three dimensions of sustainability: economic, social, and environmental. By reviewing actual industrial cases and presenting relevant academic research, the book examines the topic from four interrelated viewpoints: the industrial need for sustainable production, the development of game-like virtual environments, capturing customer value and enhancing the user experience, and finally, establishing business value. It offers a framework that will enable a rethink and shift in mindset to appreciate how real-time simulation can change the way products are manufactured and services are produced. This book will appeal to researchers and scholars in areas as diverse as strategic management, manufacturing and operations management, marketing, industrial economics, and product lifecycle management.
Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture). The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and humanoid robotics. It could even be adopted as a reference textbook in specific PhD courses.
When I attended college we studied vacuum tubes in our junior year. At that time an average radio had ?ve vacuum tubes and better ones even seven. Then transistors appeared in 1960s. A good radio was judged to be one with more thententransistors. Latergoodradioshad15-20transistors and after that everyone stopped counting transistors. Today modern processors runing personal computers have over 10milliontransistorsandmoremillionswillbeaddedevery year. The difference between 20 and 20M is in complexity, methodology and business models. Designs with 20 tr- sistors are easily generated by design engineers without any tools, whilst designs with 20M transistors can not be done by humans in reasonable time without the help of Prof. Dr. Gajski demonstrates the Y-chart automation. This difference in complexity introduced a paradigm shift which required sophisticated methods and tools, and introduced design automation into design practice. By the decomposition of the design process into many tasks and abstraction levels the methodology of designing chips or systems has also evolved. Similarly, the business model has changed from vertical integration, in which one company did all the tasks from product speci?cation to manufacturing, to globally distributed, client server production in which most of the design and manufacturing tasks are outsourced.
The book provides a comprehensive application of narrative theory to video games, and presents the player-response paradigm of game criticism. Video Game Narrative and Criticism explains the nature of gameplay - a psychological experience and a meaning-making process in the fictional world of video games.
Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: * Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery * Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling * Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge * Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB (R) codes and MAPLE (R) worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Managing today's lands is becoming an increasingly difficult task. Complex ecological interactions across multiple spatiotemporal scales create diverse landscape responses to management actions that are often novel, counter-intuitive and unexpected. To make matters worse, exotic invasions, human land use, and global climate change complicate this complexity and make past observational ecological studies limited in application to the future. Natural resource professionals can no longer rely on empirical data to analyze alternative actions in a world that is rapidly changing with few historical analogs. New tools are needed to synthesize the high complexity in ecosystem dynamics into useful applications for land management. Some of the best new tools available for this task are ecological and landscape simulation models. However, many land management professionals and scientists have little expertise in simulation modeling, and the costs of training these people will probably be exorbitantly high because most ecosystem and landscape models are exceptionally complicated and difficult to understand and use for local applications. This book was written to provide natural resource professionals with the rudimentary knowledge needed to properly use ecological models and then to interpret their results. It is based on the lessons learned from a career spent modeling ecological systems. It is intended as a reference for novice modelers to learn how to correctly employ ecosystem landscape models in natural resource management applications and to understand subsequent modeling results.
Modeling, in the past 60 years, has been constantly evolving and has revolutionized the industrial sector. Its continuous development will still have profound impact in the upcoming future. For big or small companies, modeling is a tool which brings technical improvement and profitability. What is modeling? What are the benefits and limits? What are the best practices, technical and non-technical, to apply? The objective of this book is to bring answers to these questions in a synthetic and transversal manner, so that engineers, managers and directors can see future challenges not as a threat, but as an opportunity. Features: Transversal and synthetic view on modeling, written in a clear and pragmatic way Technical best practices to build/ develop a model Non-technical best practices to efficiently deploy modeling in companies All best practices discussed in the book have been truly already implemented in past situations Theory is illustrated in a case study from the beginning to the end of the book
The new edition of 3D Game Textures: Create Professional Game Art Using Photoshop features the most up-to-date techniques that allow you to create your own unique textures, shaders, and materials. Revised to take new technology into account, it is an ideal hands-on resource for creating online worlds, simulations, web-based applications, and architectural visualization projects. Continuing the practical, no-nonsense approach of its predecessors, the fourth edition shows you how to advance your digital art skills with textures and shaders by exploring their interactions in single objects or entire scenes. It contains expanded coverage of shader nodes, and the companion website-www.lukeahearn.com/textures-has been updated to include video tutorials as well as updated sample textures, shaders, materials, actions, brushes, and all of the art from the book.
This book presents both methodological papers on and examples of applying behavioral predictive models to specific economic problems, with a focus on how to take into account people's behavior when making economic predictions. This is an important issue, since traditional economic models assumed that people make wise economic decisions based on a detailed rational analysis of all the relevant aspects. However, in reality - as Nobel Prize-winning research has shown - people have a limited ability to process information and, as a result, their decisions are not always optimal. Discussing the need for prediction-oriented statistical techniques, since many statistical methods currently used in economics focus more on model fitting and do not always lead to good predictions, the book is a valuable resource for researchers and students interested in the latest results and challenges and for practitioners wanting to learn how to use state-of-the-art techniques.
This book brings together numerous contributions to the field of magnetoelectric (ME) composites that have been reported so far. Theoretical models of ME coupling in composites relate to the wide frequency range: from low-frequency to microwave ones and are based on simultaneous solving the elastostatic/elastodynamic and electrodynamics equations. Suggested models enable one to optimize magnetoelectric parameters of a composite. The authors hope to provide some assimilation of facts into establish knowledge for readers new to the field, so that the potential of the field can be made transparent to new generations of talent to advance the subject matter.
This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also be provided. "
Focuses on the assumptions underlying the algorithms rather than their statistical properties Presents cutting-edge analysis of factor models and finite mixture models. Uses a hands-on approach to examine the assumptions made by the models and when the models fail to estimate accurately Utilizes interesting real-world data sets that can be used to analyze important microeconomic problems Introduces R programming concepts throughout the book. Includes appendices that discuss many of the concepts introduced in the book, as well as measures of uncertainty in microeconometrics.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Geologists must be able to "read" a geological map. That means interpreting the vertical dimension through the 2D view represented on the map and at different scales. The main objective of this book is to help students during this difficult learning process. Based on an abundant iconography (field photos, maps, cross-sections) and on basics in mathematics and mechanics, the book dissects the geometry of emblematic geological structures and objects in order to build 3 D models, printable in 3D. The book is dedicated to structural geology with a particular emphasis on kinematics of faulting and folding and on salt tectonics (chapters III, IV and V). The origin of continental great unconformities and oceanic break-up unconformities is also discussed (chapter II). The audience of the book is broad and includes (under)graduate students in Earth Sciences, professors of Natural Sciences, and professional or amateur geologists.
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
Geospatial information modeling and mapping has become an important tool for the investigation and management of natural resources at the landscape scale. Spatial Statistics: GeoSpatial Information Modeling and Thematic Mapping reviews the types and applications of geospatial information data, such as remote sensing, geographic information systems (GIS), and GPS as well as their integration into landscape-scale geospatial statistical models and maps. The book explores how to extract information from remotely sensed imagery, GIS, and GPS, and how to combine this with field data-vegetation, soil, and environmental-to produce a spatial model that can be reconstructed and displayed using GIS software. Readers learn the requirements and limitations of each geospatial modeling and mapping tool. Case studies with real-life examples illustrate important applications of the models. Topics covered in this book include: An overview of the geospatial information sciences and technology and spatial statistics Sampling methods and applications, including probability sampling and nonrandom sampling, and issues to consider in sampling and plot design Fine and coarse scale variability Spatial sampling schemes and spatial pattern Linear and spatial correlation statistics, including Moran's I, Geary's C, cross-correlation statistics, and inverse distance weighting Geospatial statistics analysis using stepwise regression, ordinary least squares (OLS), variogram, kriging, spatial auto-regression, binary classification trees, cokriging, and geospatial models for presence and absence data How to use R statistical software to work on statistical analyses and case studies, and to develop a geospatial statistical model
Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and micr
The second edition of Building Energy Simulation includes studies of various components and systems of buildings and their effect on energy consumption, with the help of DesignBuilderTM, a front-end for the EnergyPlus simulation engine, supported by examples and exercises. The book employs a "learning by doing" methodology. It explains simulation-input parameters and how-to-do analysis of the simulation output, in the process explaining building physics and energy simulation. Divided into three sections, it covers the fundamentals of energy simulation followed by advanced topics in energy simulation and simulation for compliance with building codes and detailed case studies for comprehensive building energy simulation. Features: Focuses on learning building energy simulation while being interactive through examples and exercises. Explains the building physics and the science behind the energy performance of buildings. Encourages an integrated design approach by explaining the interactions between various building systems and their effect on energy performance of building. Discusses a how-to model for building energy code compliance including three projects to practice whole building simulation. Provides hands-on training of building energy simulation tools: DesignBuilder (TM) and EnergyPlus. Includes practical projects problems, appendices and CAD files in the e-resources section. Building Energy Simulation is intended for students and researchers in building energy courses, energy simulation professionals, and architects. |
You may like...
Principles of Integrated Airborne…
Igor Victorovich Avtin, Vladimir Ivanovich Baburov, …
Paperback
R3,367
Discovery Miles 33 670
SILKE: South African Income Tax 2026
Madeleine Stiglingh, Jolanie Sune Wilcocks, …
Paperback
R2,170
Discovery Miles 21 700
Implementing State Government Export…
Michael Frazier
Hardcover
Graded Questions On Income Tax In South…
Kevin Mitchell, Lindsay Mitchell
Paperback
R1,172
Discovery Miles 11 720
A Student's Approach To Taxation In…
A. Oosthuizen, Karina Coetzee, …
Paperback
R1,421
Discovery Miles 14 210
|