![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Focuses on the assumptions underlying the algorithms rather than their statistical properties Presents cutting-edge analysis of factor models and finite mixture models. Uses a hands-on approach to examine the assumptions made by the models and when the models fail to estimate accurately Utilizes interesting real-world data sets that can be used to analyze important microeconomic problems Introduces R programming concepts throughout the book. Includes appendices that discuss many of the concepts introduced in the book, as well as measures of uncertainty in microeconometrics.
Modeling, in the past 60 years, has been constantly evolving and has revolutionized the industrial sector. Its continuous development will still have profound impact in the upcoming future. For big or small companies, modeling is a tool which brings technical improvement and profitability. What is modeling? What are the benefits and limits? What are the best practices, technical and non-technical, to apply? The objective of this book is to bring answers to these questions in a synthetic and transversal manner, so that engineers, managers and directors can see future challenges not as a threat, but as an opportunity. Features: Transversal and synthetic view on modeling, written in a clear and pragmatic way Technical best practices to build/ develop a model Non-technical best practices to efficiently deploy modeling in companies All best practices discussed in the book have been truly already implemented in past situations Theory is illustrated in a case study from the beginning to the end of the book
Master the art of computer animation and visual effects production with the latest edition of this cutting-edge guide This remarkable edition of "The Art of 3D Computer Animation and Effects" offers clear, step-by-step guidelines for the entire process of creating a fully rendered 3D computer animation. With up-to-date coverage of the latest computer animation styles and techniques, this versatile guide provides insightful information for creating animations and visual effects--from creative development and preproduction to finished animation. Designed to work with any computer platform, this "Fourth Edition" cuts through technical jargon and presents numerous easy-to-understand instructive diagrams. Full-color examples are presented--including VFX and animated feature movies, games, and TV commercials--by such leading companies as Blue Sky, Blur, BUF, Disney, DreamWorks, Electronic Arts, Framestore, ILM, Imagi, Microsoft, Mac Guff, The Mill, Menfond, Pixar, Polygon, Rhythm & Hues, Sony Imageworks, Tippett, Ubisoft, and Weta, and many other studios and groundbreaking independent artists from around the world. This fully revised edition features new material on the latest visual effects techniques, a useful update of the traditional principles of animation, practical information on creative development, multiple production pipeline ideas for shorts and visual effects, plus updated information on current production trends and techniques in animation, rendering, modeling, rigging, and compositing. Whether you are a student, an independent artist or creator, or a production company team member, "The Art of 3D Computer Animation and Effects, Fourth Edition" gives you a broad palette of tips and techniques for bringing your visions to life through 3D computer animation.Unique focus on creative development and production issuesNon-platform specific, with multiple examples illustrated in a practical, step-by-step approachThe newest computer animation techniques, including facial animation, image-based and non-photorealistic rendering, model rigging, real-time models, and 2D/3D integrationOver 700 full-color imagesEncyclopedic timeline and production pipeline
The new edition of 3D Game Textures: Create Professional Game Art Using Photoshop features the most up-to-date techniques that allow you to create your own unique textures, shaders, and materials. Revised to take new technology into account, it is an ideal hands-on resource for creating online worlds, simulations, web-based applications, and architectural visualization projects. Continuing the practical, no-nonsense approach of its predecessors, the fourth edition shows you how to advance your digital art skills with textures and shaders by exploring their interactions in single objects or entire scenes. It contains expanded coverage of shader nodes, and the companion website-www.lukeahearn.com/textures-has been updated to include video tutorials as well as updated sample textures, shaders, materials, actions, brushes, and all of the art from the book.
This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-conventional devices used in generation, transmission and distribution systems, discussing relevant assumptions and implications on performance assessment. This background is complemented with several guidelines for advanced use of DSL and DPL languages as well as for interfacing with other software packages, which is of great value for creating and performing different types of steady-state and dynamic performance simulation analysis. All employed test case studies are provided as supporting material to the reader to ease recreation of all examples presented in the book as well as to facilitate their use in other cases related to planning and operation studies. Providing an invaluable resource for the formal instruction of power system undergraduate/postgraduate students, this book is also a useful reference for engineers working in power system operation and planning.
Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture). The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and humanoid robotics. It could even be adopted as a reference textbook in specific PhD courses.
When I attended college we studied vacuum tubes in our junior year. At that time an average radio had ?ve vacuum tubes and better ones even seven. Then transistors appeared in 1960s. A good radio was judged to be one with more thententransistors. Latergoodradioshad15-20transistors and after that everyone stopped counting transistors. Today modern processors runing personal computers have over 10milliontransistorsandmoremillionswillbeaddedevery year. The difference between 20 and 20M is in complexity, methodology and business models. Designs with 20 tr- sistors are easily generated by design engineers without any tools, whilst designs with 20M transistors can not be done by humans in reasonable time without the help of Prof. Dr. Gajski demonstrates the Y-chart automation. This difference in complexity introduced a paradigm shift which required sophisticated methods and tools, and introduced design automation into design practice. By the decomposition of the design process into many tasks and abstraction levels the methodology of designing chips or systems has also evolved. Similarly, the business model has changed from vertical integration, in which one company did all the tasks from product speci?cation to manufacturing, to globally distributed, client server production in which most of the design and manufacturing tasks are outsourced.
The book provides a comprehensive application of narrative theory to video games, and presents the player-response paradigm of game criticism. Video Game Narrative and Criticism explains the nature of gameplay - a psychological experience and a meaning-making process in the fictional world of video games.
Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy modules. The Python source code and data files are available on the author's website. The book's five sections present: An overview of problem solving and simple Python programs, introducing the basic models and techniques for designing and implementing problem solutions, independent of software and hardware tools Programming principles with the Python programming language, covering basic programming concepts, data definitions, programming structures with flowcharts and pseudo-code, solving problems, and algorithms Python lists, arrays, basic data structures, object orientation, linked lists, recursion, and running programs under Linux Implementation of computational models with Python using Numpy, with examples and case studies The modeling of linear optimization problems, from problem formulation to implementation of computational models This book introduces the principles of computational modeling as well as the approaches of multi- and interdisciplinary computing to beginners in the field. It provides the foundation for more advanced studies in scientific computing, including parallel computing using MPI, grid computing, and other methods and techniques used in high-performance computing.
This book presents both methodological papers on and examples of applying behavioral predictive models to specific economic problems, with a focus on how to take into account people's behavior when making economic predictions. This is an important issue, since traditional economic models assumed that people make wise economic decisions based on a detailed rational analysis of all the relevant aspects. However, in reality - as Nobel Prize-winning research has shown - people have a limited ability to process information and, as a result, their decisions are not always optimal. Discussing the need for prediction-oriented statistical techniques, since many statistical methods currently used in economics focus more on model fitting and do not always lead to good predictions, the book is a valuable resource for researchers and students interested in the latest results and challenges and for practitioners wanting to learn how to use state-of-the-art techniques.
This book brings together numerous contributions to the field of magnetoelectric (ME) composites that have been reported so far. Theoretical models of ME coupling in composites relate to the wide frequency range: from low-frequency to microwave ones and are based on simultaneous solving the elastostatic/elastodynamic and electrodynamics equations. Suggested models enable one to optimize magnetoelectric parameters of a composite. The authors hope to provide some assimilation of facts into establish knowledge for readers new to the field, so that the potential of the field can be made transparent to new generations of talent to advance the subject matter.
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and micr
Geospatial information modeling and mapping has become an important tool for the investigation and management of natural resources at the landscape scale. Spatial Statistics: GeoSpatial Information Modeling and Thematic Mapping reviews the types and applications of geospatial information data, such as remote sensing, geographic information systems (GIS), and GPS as well as their integration into landscape-scale geospatial statistical models and maps. The book explores how to extract information from remotely sensed imagery, GIS, and GPS, and how to combine this with field data-vegetation, soil, and environmental-to produce a spatial model that can be reconstructed and displayed using GIS software. Readers learn the requirements and limitations of each geospatial modeling and mapping tool. Case studies with real-life examples illustrate important applications of the models. Topics covered in this book include: An overview of the geospatial information sciences and technology and spatial statistics Sampling methods and applications, including probability sampling and nonrandom sampling, and issues to consider in sampling and plot design Fine and coarse scale variability Spatial sampling schemes and spatial pattern Linear and spatial correlation statistics, including Moran's I, Geary's C, cross-correlation statistics, and inverse distance weighting Geospatial statistics analysis using stepwise regression, ordinary least squares (OLS), variogram, kriging, spatial auto-regression, binary classification trees, cokriging, and geospatial models for presence and absence data How to use R statistical software to work on statistical analyses and case studies, and to develop a geospatial statistical model
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also be provided. "
The second edition of Building Energy Simulation includes studies of various components and systems of buildings and their effect on energy consumption, with the help of DesignBuilderTM, a front-end for the EnergyPlus simulation engine, supported by examples and exercises. The book employs a "learning by doing" methodology. It explains simulation-input parameters and how-to-do analysis of the simulation output, in the process explaining building physics and energy simulation. Divided into three sections, it covers the fundamentals of energy simulation followed by advanced topics in energy simulation and simulation for compliance with building codes and detailed case studies for comprehensive building energy simulation. Features: Focuses on learning building energy simulation while being interactive through examples and exercises. Explains the building physics and the science behind the energy performance of buildings. Encourages an integrated design approach by explaining the interactions between various building systems and their effect on energy performance of building. Discusses a how-to model for building energy code compliance including three projects to practice whole building simulation. Provides hands-on training of building energy simulation tools: DesignBuilder (TM) and EnergyPlus. Includes practical projects problems, appendices and CAD files in the e-resources section. Building Energy Simulation is intended for students and researchers in building energy courses, energy simulation professionals, and architects.
The second edition of Building Energy Simulation includes studies of various components and systems of buildings and their effect on energy consumption, with the help of DesignBuilderTM, a front-end for the EnergyPlus simulation engine, supported by examples and exercises. The book employs a "learning by doing" methodology. It explains simulation-input parameters and how-to-do analysis of the simulation output, in the process explaining building physics and energy simulation. Divided into three sections, it covers the fundamentals of energy simulation followed by advanced topics in energy simulation and simulation for compliance with building codes and detailed case studies for comprehensive building energy simulation. Features: Focuses on learning building energy simulation while being interactive through examples and exercises. Explains the building physics and the science behind the energy performance of buildings. Encourages an integrated design approach by explaining the interactions between various building systems and their effect on energy performance of building. Discusses a how-to model for building energy code compliance including three projects to practice whole building simulation. Provides hands-on training of building energy simulation tools: DesignBuilder (TM) and EnergyPlus. Includes practical projects problems, appendices and CAD files in the e-resources section. Building Energy Simulation is intended for students and researchers in building energy courses, energy simulation professionals, and architects.
This book presents the state-of-the-art in social simulation as presented at the Social Simulation Conference 2018 in Stockholm, Sweden. It covers the developments in applications and methods of social simulation, addressing societal issues such as socio-ecological systems and policy making. Methodological issues discussed include large-scale empirical calibration, model sharing and interdisciplinary research, as well as decision making models, validation and the use of qualitative data in simulation modeling. Research areas covered include archaeology, cognitive science, economics, organization science, and social simulation education. This collection gives readers insight into the increasing use of social simulation in both its theoretical development and in practical applications such as policy making whereby modelling and the behavior of complex systems is key. The book will appeal to students, researchers and professionals in the various fields.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Relevant to, and drawing from, a range of disciplines, the chapters in this collection show the diversity, and applicability, of research in Bayesian argumentation. Together, they form a challenge to philosophers versed in both the use and criticism of Bayesian models who have largely overlooked their potential in argumentation. Selected from contributions to a multidisciplinary workshop on the topic held in Sweden in 2010, the authors count linguists and social psychologists among their number, in addition to philosophers. They analyze material that includes real-life court cases, experimental research results, and the insights gained from computer models. The volume provides, for the first time, a formal measure of subjective argument strength and argument force, robust enough to allow advocates of opposing sides of an argument to agree on the relative strengths of their supporting reasoning. With papers from leading figures such as Michael Oaksford and Ulrike Hahn, the book comprises recent research conducted at the frontiers of Bayesian argumentation and provides a multitude of examples in which these formal tools can be applied to informal argument. It signals new and impending developments in philosophy, which has seen Bayesian models deployed in formal epistemology and philosophy of science, but has yet to explore the full potential of Bayesian models as a framework in argumentation. In doing so, this revealing anthology looks destined to become a standard teaching text in years to come. "
This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI'18), which was held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention in Granada, Spain on September 20, 2018. It presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find papers on a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as harmonisation and frontline applications in research and clinical practice. The respective papers constitute invited works from high-profile researchers with a specific focus on three topics that are now gaining momentum within the diffusion MRI community: i) machine learning for diffusion MRI; ii) diffusion MRI outside the brain (e.g. in the placenta); and iii) diffusion MRI for multimodal imaging. The book shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. It includes rigorous mathematical derivations, a wealth of full-colour visualisations, and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics alike.
Given the importance of interdisciplinary work in sustainability, Simulation of Ecological and Environmental Models introduces the theory and practice of modeling and simulation as applied in a variety of disciplines that deal with earth systems, the environment, ecology, and human-nature interactions. Based on the author's many years of teaching graduate and undergraduate students in the United States, Spain, and Latin America, the textbook shows how to implement simulations and analyze the results using an open-source software platform. Learn How to Use a Broad Range of Environmental Models The textbook is organized into three parts to allow greater flexibility using the material in various countries and types of curricula. The first part provides a tutorial-style mathematical review and a gentle introduction to the basics of R software. The second part explains the fundamentals of modeling methodology through one-dimensional models. After a review of matrix algebra, the third part progresses to multidimensional models, focusing on structured populations, communities, and ecosystems. The final chapters show how simple models are hooked together to generate more comprehensive models. Build from Fundamental Concepts to Problem Solving Each chapter starts with conceptual and theoretical material to give a firm foundation in how the methods work. Examples and exercises illustrate the applications and demonstrate how to go from concepts to problem solving. Hands-on computer sessions let students grasp the practical implications and learn by doing. Throughout, the computer examples and exercises use seem, an open-source R package developed by the author, which lets students quickly produce simulations and explore the effects of changing conditions in the model. This practical book is a comprehensive, unified presentation of ecological and environmental m |
You may like...
Modeling and Simulation Techniques in…
Pijush Samui, Subrata Chakraborty, …
Hardcover
R5,624
Discovery Miles 56 240
Recent Advances in Numerical Simulations
Francisco Bulnes, Jan Peter Hessling
Hardcover
R3,114
Discovery Miles 31 140
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
Digital Manufacturing - The…
Chandrakant D. Patel, Chun-Hsien Chen
Paperback
R4,567
Discovery Miles 45 670
Advances in Principal Component Analysis
Fausto Pedro Garcia Marquez
Hardcover
R3,102
Discovery Miles 31 020
|