![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Computer modelling & simulation
Visualization and mathematics have begun a fruitful relationship,
establishing links between problems and solutions of both fields.
In some areas of mathematics, like differential geometry and
numerical mathematics, visualization techniques are applied with
great success. However, visualization methods are relying heavily
on mathematical concepts.
This unique book brings together a comprehensive set of papers on the background, theory, technical issues and applications of agent-based modelling (ABM) within geographical systems. This collection of papers is an invaluable reference point for the experienced agent-based modeller as well those new to the area. Specific geographical issues such as handling scale and space are dealt with as well as practical advice from leading experts about designing and creating ABMs, handling complexity, visualising and validating model outputs. With contributions from many of the world's leading research institutions, the latest applied research (micro and macro applications) from around the globe exemplify what can be achieved in geographical context. This book is relevant to researchers, postgraduate and advanced undergraduate students, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, social simulation modelling and geographical information sciences. "
Learning a 3D visualization software is a daunting task under any circumstances and while it may be easy to find online tutorials that tell you what to do to perform certain tasks you'll seldom learn "why" you are performing the steps. This book approaches training from a top-down perspective way you will first learn important concepts of 3D visualization and functionality of 3ds Max before moving into the finer detail of the command structure. By learning how things work and why you might choose one method over another the book will not only teach you where the buttons are, but more importantly how to think about the holistic process of 3D design so that you can then apply the lessons to your own needs. The goal of the learning presented here is to familiarize the new user of 3ds Max with a typical workflow from a production environment from planning to modeling, materials, and lighting, and then applying special effects and compositing techniques for a finished product.
Employing computer simulations for the study of the evolution of altruism has been popular since Axelrod's book "The Evolution of Cooperation". But have the myriads of simulation studies that followed in Axelrod's footsteps really increased our knowledge about the evolution of altruism or cooperation? This book examines in detail the working mechanisms of simulation based evolutionary explanations of altruism. It shows that the "theoretical insights" that can be derived from simulation studies are often quite arbitrary and of little use for the empirical research. In the final chapter of the book, therefore, a set of epistemological requirements for computer simulations is proposed and recommendations for the proper research design of simulation studies are made.
The book helps readers develop fundamental skills in the field of biomedical illustrations with a training approach based on step-by-step tutorials with a practical approach. Medical/scientific illustration mainly belongs to professionals in the art field or scientists trying to create artistic visualization. There is not a merging between the two, even if the demand is high. This leads to accurate scientific images with no appeal (or trivial mistakes), or appealing CSI-like images with huge scientific mistakes. This gives the fundamentals to the scientist so they can apply CG techniques that give a more scientific approach creating mistake-free images. Key Features This book provides a reference where none exist. Without overwhelming the reader with software details it teaches basic principles to give readers to fundamentals to create. Demonstrates professional artistic tools used by scientists to create better images for their work. Coverage of lighting and rendering geared specifically for scientific work that is toturoal based with a practical approach. Included are chapter tutorials, key terms and end of chapter references for Art and Scientific References for each chapter.
This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: * Equips practitioners and researchers to handle powerful tools for engineering design and analysis using many detailed illustrations * Emphasizes important engineering design principles in introducing readers to a range of techniques * Includes tutorials providing readers with appropriate scaffolding to accelerate their learning process * Adopts a product development, cost-consideration perspective through the book's many examples
This book gathers 22 papers which were presented at the 6th International Symposium of the ICA Commission on the History of Cartography in Dubrovnik, Croatia on 13-15 October 2016. The overall conference theme was 'The Dissemination of Cartographic Knowledge: Production - Trade - Consumption - Preservation'. The book presents original research by internationally respected authors in the field of historical cartography, offering a significant contribution to the development of this field of study, but also of geography, history and the GIS sciences. The primary target audience includes researchers, educators, postgraduate students, map librarians and archivists.
Collecting the work of the foremost scientists in the field, Discrete-Event Modeling and Simulation: Theory and Applications presents the state of the art in modeling discrete-event systems using the discrete-event system specification (DEVS) approach. It introduces the latest advances, recent extensions of formal techniques, and real-world examples of various applications. The book covers many topics that pertain to several layers of the modeling and simulation architecture. It discusses DEVS model development support and the interaction of DEVS with other methodologies. It describes different forms of simulation supported by DEVS, the use of real-time DEVS simulation, the relationship between DEVS and graph transformation, the influence of DEVS variants on simulation performance, and interoperability and composability with emphasis on DEVS standardization. The text also examines extensions to DEVS, new formalisms, and abstractions of DEVS models as well as the theory and analysis behind real-world system identification and control. To support the generation and search of optimal models of a system, a framework is developed based on the system entity structure and its transformation to DEVS simulation models. In addition, the book explores numerous interesting examples that illustrate the use of DEVS to build successful applications, including optical network-on-chip, construction/building design, process control, workflow systems, and environmental models. A one-stop resource on advances in DEVS theory, applications, and methodology, this volume offers a sampling of the best research in the area, a broad picture of the DEVS landscape, and trend-setting applications enabled by the DEVS approach. It provides the basis for future research discoveries and encourages the development of new applications.
The "Concise Encyclopedia of Modelling & Simulation" contains
172 alphabetically arranged articles describing the modelling and
simulation of physical systems. The emphasis is on mathematical
models and their various forms, although other types of models,
such as knowledge-based, linguistics-based, graphical and
data-based, are also discussed. The articles are revised from the
"Systems & Control Encyclopedia," and many newly commissioned
articles are included describing recent developments in the field.
Articles on identification cover all aspects of this problem, from
the use and choice of specific test signals to problems of model
order and the many algorithms and approaches to parameter
estimation. Computational techniques, such as the finite-element
method, that play an important role in analyzing nonlinear models
are covered. Articles outline the development of simulation,
consider currently available simulation languages, describe
applications and cover current developments in the area. Where
appropriate, illustrations and tables are included to clarify
particular topics. This encyclopedia will be a valuable reference
source for all practising engineers, researchers and postgraduate
students in the field of modelling and simulation.
Designed for a one-semester course, Introduction to Numerical Analysis and Scientific Computing presents fundamental concepts of numerical mathematics and explains how to implement and program numerical methods. The classroom-tested text helps students understand floating point number representations, particularly those pertaining to IEEE simple and double-precision standards as used in scientific computer environments such as MATLAB (R) version 7. Drawing on their years of teaching students in mathematics, engineering, and the sciences, the authors discuss computer arithmetic as a source for generating round-off errors and how to avoid the use of algebraic expression that may lead to loss of significant figures. They cover nonlinear equations, linear algebra concepts, the Lagrange interpolation theorem, numerical differentiation and integration, and ODEs. They also focus on the implementation of the algorithms using MATLAB (R). Each chapter ends with a large number of exercises, with answers to odd-numbered exercises provided at the end of the book. Throughout the seven chapters, several computer projects are proposed. These test the students' understanding of both the mathematics of numerical methods and the art of computer programming.
The International Conference on Cognitive Modeling brings together researchers who develop computational models to explain and predict cognitive data. The core theme of the 2004 conference was "Integrating Computational Models," encompassing an integration of diverse data through models of coherent phenomena; integration across modeling approaches; and integration of teaching and modeling. This text presents the proceedings of that conference. The International Conference on Cognitive Modeling 2004 sought to grow the discipline of computational cognitive modeling by providing a sophisticated modeling audience for cutting-edge researchers, in addition to offering a forum for integrating insights across alternative modeling approaches in both basic research and applied settings, and a venue for planning the future growth of the discipline. The meeting included a careful peer-review process of 6-page paper submissions; poster-abstracts to include late-breaking work in the area; prizes for best papers; a doctoral consortium; and competitive modeling symposia that compare and contrast different approaches to the same phenomena.
This book presents a collection of results from the interdisciplinary research project "ELLI" published by researchers at RWTH Aachen University, the TU Dortmund and Ruhr-Universitat Bochum between 2011 and 2016. All contributions showcase essential research results, concepts and innovative teaching methods to improve engineering education. Further, they focus on a variety of areas, including virtual and remote teaching and learning environments, student mobility, support throughout the student lifecycle, and the cultivation of interdisciplinary skills.
The enormous advances in computational hardware and software resources over the last fifteen years resulted in the development of non-conventional data processing and simulation methods. Among these methods artificial intelligence (AI) has been mentioned as one of the most eminent approaches to the so-called intelligent methods of information processing that present a great potential for engineering applications. ""Intelligent Computational Paradigms in Earthquake Engineering"" contains contributions that cover a wide spectrum of very important real-world engineering problems, and explore the implementation of neural networks for the representation of structural responses in earthquake engineering. This book assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering. ""Intelligent Computational Paradigms in Earthquake Engineering"" presents the application of learning machines, artificial neural networks and support vector machines as highly-efficient pattern recognition tools for structural damage detection. It includes an AI-based evaluation of bridge structures using life-cycle cost principles that considers seismic risk, and emphasizes the use of AI methodologies in a geotechnical earthquake engineering application.
This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other's advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering.
Geologists must be able to "read" a geological map. That means interpreting the vertical dimension through the 2D view represented on the map and at different scales. The main objective of this book is to help students during this difficult learning process. Based on an abundant iconography (field photos, maps, cross-sections) and on basics in mathematics and mechanics, the book dissects the geometry of emblematic geological structures and objects in order to build 3 D models, printable in 3D. The book is dedicated to structural geology with a particular emphasis on kinematics of faulting and folding and on salt tectonics (chapters III, IV and V). The origin of continental great unconformities and oceanic break-up unconformities is also discussed (chapter II). The audience of the book is broad and includes (under)graduate students in Earth Sciences, professors of Natural Sciences, and professional or amateur geologists.
Due to limited publicly available software and lack of documentation, those involved with production volume rendering often have to start from scratch creating the necessary elements to make their system work. Production Volume Rendering: Design and Implementation provides the first full account of volume rendering techniques used for feature animation and visual effects production. It covers the theoretical underpinnings as well as the implementation of a working renderer. The book offers two paths toward understanding production volume rendering. It describes: Modern production volume rendering techniques in a generic context, explaining how the techniques fit together and how the modules are used to achieve real-world goals Implementation of the techniques, showing how to translate abstract concepts into concrete, working code and how the ideas work together to create a complete system As an introduction to the field and an overview of current techniques and algorithms, this book is a valuable source of information for programmers, technical directors, artists, and anyone else interested in how production volume rendering works. Web ResourceThe scripts, data, and source code for the book's renderer are freely available at https://github.com/pvrbook/pvr. Readers can see how the code is implemented and acquire a practical understanding of how various design considerations impact scalability, extensibility, generality, and performance.
This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors' extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: * Background and overview of safety and dependability studies; * Explanation and critical analysis of definitions related to core concepts; * Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); * Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; * Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; * Analysis, modelling, and calculations of common cause failure and uncertainties; * Linkages and combinations between the various modelling and calculation approaches; * Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of thisworkshopis to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations. "
The networking capabilities of the Java platform have been extended
considerably since the first edition of the book. This new edition
covers version 1.5-1.7, the most current iterations, as well as
making the following improvements:
This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how and why computers, data treatment devices and programming languages have occasioned a gradual but irresistible and massive shift from mathematical models to computer simulations.
Developments in Geographic Information Technology have raised the expectations of users. A static map is no longer enough; there is now demand for a dynamic representation. Time is of great importance when operating on real world geographical phenomena, especially when these are dynamic. Researchers in the field of Temporal Geographical Information Systems (TGIS) have been developing methods of incorporating time into geographical information systems. Spatio-temporal analysis embodies spatial modelling, spatio-temporal modelling and spatial reasoning and data mining. Advances in Spatio-Temporal Analysis contributes to the field of spatio-temporal analysis, presenting innovative ideas and examples that reflect current progress and achievements.
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.
The use of new media in the service of cultural heritage is a fast growing field, known variously as virtual or digital heritage. New Heritage, under this denomination, broadens the definition of the field to address the complexity of cultural heritage such as the related social, political and economic issues. This book is a collection of 20 key essays, of authors from 11 countries, representing a wide range of professions including architecture, philosophy, history, cultural heritage management, new media, museology and computer science, which examine the application of new media to cultural heritage from a different points of view. Issues surrounding heritage interpretation to the public and the attempts to capture the essence of both tangible (buildings, monuments) and intangible (customs, rituals) cultural heritage are investigated in a series of innovative case studies.
The Distinguished Dissertation series is published on behalf of the Conference of Professors and Heads of Computing and The British Computer Society, who annually select the best British PhD dissertations in computer science for publication. The dissertations are selected on behalf of the CPHC by a panel of eight academics. Each dissertation chosen makes a noteworthy contribution to the subject and reaches a high standard of exposition, placing all results clearly in the context of computer science as a whole. In this way computer scientists with significantly different interests are able to grasp the essentials - or even find a means of entry - to an unfamiliar research topic. This book develops a theory of game semantics, a recently discovered setting for modelling and reasoning about sequential programming languages, suitable for interpreting higher-order functional languages with rich type structure, and applies it to constr uct a fully abstract model of the metalanguage FPC. |
You may like...
Computational Medicine in Data Mining…
Goran Rakocevic, Tijana Djukic, …
Hardcover
Information Filtering and Retrieval…
Cristian Lai, Alessandro Giuliani, …
Hardcover
R2,653
Discovery Miles 26 530
Agents and Multi-agent Systems…
Gordan Jezic, Yun-Heh Jessica Chen-Burger, …
Hardcover
R5,201
Discovery Miles 52 010
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
Foundations of Data Mining and Knowledge…
Tsau Young Lin, Setsuo Ohsuga, …
Hardcover
R4,223
Discovery Miles 42 230
Data Mining Techniques for the Life…
Oliviero Carugo, Frank Eisenhaber
Hardcover
R4,232
Discovery Miles 42 320
Intelligent Data Mining in Law…
Paolo Massimo Buscema, William J. Tastle
Hardcover
R6,559
Discovery Miles 65 590
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Information and Communication Technology…
Simon Fong, Shyam Akashe, …
Hardcover
R5,308
Discovery Miles 53 080
|