![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering
This book reviews and examines how power system low-frequency power oscillations and sub-synchronous oscillations may be affected by grid connection of wind power generation. Grid connection of wind power generation affects the power system small-signal stability and has been one of the most actively pursued research subjects in power systems and power electronics engineering in the last ten years. This book is the first of its kind to cover the impact of wind power generation on power system low-frequency oscillations and sub-synchronous oscillations. It begins with a comprehensive overview of the subject and progresses to modeling of power systems and introduces the application of conventional methods, including damping torque analysis, modal analysis and frequency-domain analysis, presented with detailed examples, making it useful for researchers and engineers worldwide.
With this volume, Ezequiel P. M. Leiva and co-authors fill a gap in the available literature, by providing a much-needed, comprehensive review of the relevant literature for electrochemists, materials scientists and energy researchers. For the first time, they present applications of underpotential deposition (UPD) on the nanoscale, such as nanoparticles and nanocavities, as well as for electrocatalysis. They also discuss real surface determinations and layer-by-layer growth of ultrathin films, as well as the very latest modeling approaches to UPD based on nanothermodynamics, statistical mechanics, molecular dynamics and Monte-Carlo simulations.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.
This book presents innovative techniques and approaches to maintaining dynamic security of modern power systems that have a high penetration of renewable energy sources (RESs). The authors propose a number of frequency control strategies and schemes to address and evade stability problems in system frequency and voltage that can lead to power interruption and power failure/blackout. The book includes case studies aimed at validating the effectiveness of the techniques and strategies presented, and will be a valuable resource for researchers working in electrical power engineering, power system stability, dynamics and control, and microgrids.
Transformers and Motors is an in-depth technical reference which
was originally written for the National Joint Apprenticeship
Training Committee to train apprentice and journeymen electricians.
This book provides detailed information for equipment installation
and covers equipment maintenance and repair. The book also includes
troubleshooting and replacement guidelines, and it contains a
minimum of theory and math.
This book offers examples of how data science, big data, analytics, and cloud technology can be used in healthcare to significantly improve a hospital's IT Energy Efficiency along with information on the best ways to improve energy efficiency for healthcare in a cost effective manner. The book builds on the work done in other sectors (mainly data centers) in effectively measuring and improving IT energy efficiency and includes case studies illustrating power and cooling requirements within Green Healthcare. Making Healthcare Green will appeal to professionals and researchers working in the areas of analytics and energy efficiency within the healthcare fields.
This book builds on the cutting edge research presented in the previous edition that was the first of its kind to present the technology behind an emerging power systems management tool still in the early stages of commercial roll-out. In the intervening years, synchrophasors have become a crucial and widely adopted tool in the battle against electricity grid failures around the world. Still the most accurate wide area measurement (WAMS) technology for power systems, synchronized phasor measurements have become increasingly sophisticated and useful for system monitoring, as the advent of big data storage allows for more nuanced real-time analysis, allowing operators to predict, prevent and mitigate the impacts of blackouts with enhanced accuracy and effectiveness. This new edition continues to provide the most encompassing overview of the technology from its pioneers, and has been expanded and updated to include all the applications and optimizations of the last decade.
This book offers a comprehensive view on resilience based upon state-of-the-science theories and methodological applications that resilience may fill. Specifically, this text provides a compendium of knowledge on the theory, methods, and practice of resilience across a variety of country and case contexts, and demonstrates how a resilience-based approach can help further improved infrastructure, vibrant societies, and sustainable environments and ecologies, among many others. Resilience is a term with thousands of years of history. Only recently has resilience been applied to the management of complex interconnected systems, yet its impact as a governing philosophy and an engineering practice has been pronounced. Colloquially, resilience has been used as a synonym for 'bouncing back'. Philosophically and methodologically, however, it is much more. In a world defined by interconnected and interdependent systems such as water, food, energy, transportation, and the internet, a sudden and unexpected disruption to one critical system can lead to significant challenges for many others. The Science and Practice of Resilience is beneficial for those seeking to gain a rich knowledge of the resilience world, as well as for practitioners looking for methods and tools by which resilience may be applied in real-world contexts.
This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system.
Large Scale Wind Power Grid Integration: Technological and Regulatory Issues presents engineers with detailed solutions on the challenges of integrating and transmitting electricity generated from high power wind installations, covering all of the standard engineering issues associated with high power wind generation. The book includes detailed case studies from eight wind power bases in China, providing important insights for engineers in countries that are seeking to develop large-scale wind power farms. Also discussed is the emergence of 10 GW-level wind power bases that are now operational in China and those that are planned for offshore construction in Europe, the U.S., and other places in the world. China's leadership in Large-scale wind power bases with capacities over 1 GW (which already account for approximately 70%-80% of the total installed capacity in China) means that globally, engineers who are challenged with developing large-scale wind power installations can gain access to the experiences of Chinese engineers in this important technology.
Energy Management Principles: Applications, Benefits, Savings, Second Edition is a comprehensive guide to the fundamental principles and systematic processes of maintaining and improving energy efficiency and reducing waste. Fully revised and updated with analysis of world energy utilization, incentives and utility rates, and new content highlighting how energy efficiency can be achieved through 1 of 16 outlined principles and programs, the book presents cost effective analysis, case studies, global examples, and guidance on building and site auditing. This fully revised edition provides a theoretical basis for conservation, as well as the avenues for its application, and by doing so, outlines the potential for cost reductions through an analysis of inefficiencies.
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
A restricted source of power supply is analysed in this book - namely the switching mode power supplies (SMPS), which utilise the Pulse Width Modulation (PWM) technique to operate. Even though restricted, such a class of power supply is vital to circuits as most of modern electronic equipment is dependant on this form of technology to feed electronic boards. Its main advantages are greater efficiency, and its minimum physical size and weight.
Collates the most relevant and up to date information on renewable energy systems in a user friendly format for undergraduate and high school students Focused on power production technologies from renewable energy sources. An introduction to how sources of renewable energy work; their advantages and drawbacks. Timely text with the need for fast adoption of renewable energy technologies around the world. Diverse audience including students with some scientific background such as final year in high school wanting to know more about combatting climate change.
Less than a decade ago, lead halide perovskite semiconductors caused a sensation: Solar cells exhibiting astonishingly high levels of efficiency. Recently, it became possible to synthesize nanocrystals of this material as well. Interestingly; simply by controlling the size and shape of these crystals, new aspects of this material literally came to light. These nanocrystals have proven to be interesting candidates for light emission. In this thesis, the recombination, dephasing and diffusion of excitons in perovskite nanocrystals is investigated using time-resolved spectroscopy. All these dynamic processes have a direct impact on the light-emitting device performance from a technology point of view. However, most importantly, the insights gained from the measurements allowed the author to modify the nanocrystals such that they emitted with an unprecedented quantum yield in the blue spectral range, resulting in the successful implementation of this material as the active layer in an LED. This represents a technological breakthrough, because efficient perovskite light emitters in this wavelength range did not exist before.
The book covers computational statistics, its methodologies and applications for IoT device. It includes the details in the areas of computational arithmetic and its influence on computational statistics, numerical algorithms in statistical application software, basics of computer systems, statistical techniques, linear algebra and its role in optimization techniques, evolution of optimization techniques, optimal utilization of computer resources, and statistical graphics role in data analysis. It also explores computational inferencing and computer model's role in design of experiments, Bayesian analysis, survival analysis and data mining in computational statistics.
This book introduces the concept, design and application of green biocomposites, with a specific focus on the current demand for green biocomposites for automotive and aerospace components. It discusses the mathematical background, innovative approaches to physical modelling, analysis and design techniques. Including numerous illustrations, tables, case studies and exercises, the text summarises current research in the field. It is a valuable reference resource for researchers, students and scientists working in the field of materials science.
This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.
Every engineer must eventually face their first daunting design project. Scheduling, organization, budgeting, prototyping: all can be overwhelming in the short time given to complete the project. While there are resources available on project management and the design process, many are focused too narrowly on specific topics or areas of engineering. Practical Engineering Design presents a complete overview of the design project and beyond for any engineering discipline, including sections on how to protect intellectual property rights and suggestions for turning the project into a business. An outgrowth of the editors' broad experience teaching the capstone Engineering Design course, Practical Engineering Design reflects the most pressing and often-repeated questions with a set of guidelines for the entire process. The editors present two sample project reports and presentations in the appendix and refer to them throughout the book, using examples and critiques to demonstrate specific suggestions for improving the quality of writing and presentation. Real-world examples demonstrate how to formulate schedules and budgets, and generous references in each chapter offer direction to more in-depth information. Whether for a co-op assignment or your first project on the job, this is the most comprehensive guide available for deciding where to begin, organizing the team, budgeting time and resources, and, most importantly, completing the project successfully.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
This book presents readers with an integrated modeling approach for analyzing and understanding the interconnection of water, energy, and food resources and discusses the relationship between resilience and sustainability of the food- energy -water (FEW) system. Authors provide novel frameworks, models, and algorithms designed to balance the theoretical and applicative aspects of each chapter. The book covers an integrated modeling approach for FEW systems along with developed methods, codes, and planning tools for designing interdependent energy, water and food systems. In-depth chapters discuss the impact of renewable energy resources in FEW systems, sustainable design and operation, net zero energy buildings, and challenges and opportunities of the FEW nexus in the sustainable development of different countries. This book is useful for graduate students, researchers, and engineers seeking to understand how sustainable FEW systems contribute to the resilience of these systems and help policy and design makers allocate and prioritize resources in an integrated manner across the food, energy, and water sectors.
This book gathers the latest advances, innovations, and applications in the field of energy, environmental and construction engineering, as presented by international researchers and engineers at the International Scientific Conference Energy, Environmental and Construction Engineering, held in St. Petersburg, Russia on November 19-20, 2019. It covers highly diverse topics, including BIM; bridges, roads and tunnels; building materials; energy efficient and green buildings; structural mechanics; fluid mechanics; measuring technologies; environmental management; power consumption management; renewable energy; smart cities; and waste management. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations. |
![]() ![]() You may like...
Bioenergy Engineering - Fundamentals…
Krushna Prasad Shadangi, Prakash Kumar Sarangi, …
Paperback
R4,858
Discovery Miles 48 580
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R2,054
Discovery Miles 20 540
|