![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering
This book presents select proceedings of the International Conference on Advances in Electrical Control and Signal Systems (AECSS) 2019. The focus is on the current developments in control and signal systems in electrical engineering, and covers various topics such as power systems, energy systems, micro grid, smart grid, networks, fuzzy systems and their control. The book also discusses various properties and performance of signal systems and their applications in different fields. The contents of this book can be useful for students, researchers as well as professionals working in power and energy systems, and other related fields.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications.
This book is devoted to the development of complex methods and means of their implementation with using UAVs aimed for improving the safety and efficiency of the energy system. The scientific problem of complex automated monitoring of the energy system objects with using UAVs has been solved, including the control of its elements in the visible and infrared range, the acoustic spectrum, as well as by the levels of the electric field strength. The scientific foundations of mathematical, physical and statistical modeling of electromagnetic and acoustic fields in the elements of electric power objects of complex spatial configurations have been created, taking into account the possibility of the appearance of such nonlinear processes as corona discharges and breakdowns at long air gaps. Improved methods are proposed for determining the exact location of accidents on power lines using UAVs on the basis of the developed mathematical models and the obtained analytical expressions. Conceptual foundations for the creation of methods and means for monitoring the state of insulation, lightning protection systems and the integrity of the structures of electric power facilities with using UAVs have been formed.
This book presents a selection of recently developed collective and computational intelligence techniques, which it subsequently applies to energy management problems ranging from performance analysis to economic analysis, and from strategic analysis to operational analysis, with didactic numerical examples. As a form of intelligence emerging from the collaboration and competition of individuals, collective and computational intelligence addresses new methodological, theoretical, and practical aspects of complex energy management problems. The book offers an excellent reference guide for practitioners, researchers, lecturers and postgraduate students pursuing research on intelligence in energy management. The contributing authors are recognized researchers in the energy research field.
Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.
Wearable electronics, wireless devices, and other mobile technologies have revealed a deficit and a necessity for innovative methods of gathering and utilizing power. Drawing on otherwise wasted sources of energy, such as solar, thermal, and biological, is an important part of discovering future energy solutions. Innovative Materials and Systems for Energy Harvesting Applications reports on some of the best tools and technologies available for powering humanity's growing thirst for electronic devices, including piezoelectric, solar, thermoelectric, and electromagnetic energies. This book is a crucial reference source for academics, industry professionals, and scientists working toward the future of energy.
Sustainable Communities Design Handbook: Green Engineering, Architecture, and Technology, Second Edition, brings together the major players responsible for sustainable development at both community and metropolitan scales. The book aims to explain and demonstrate the practice, planning, design, building and managing of the engineering, architectural and economic development of cities and communities to meet sustainable development objectives. Offering a holistic approach to creating sustainable communities, the book includes a 40 percent increase in new methods and technology over the last edition, and 50 percent more case studies from around the world to illustrate how common sustainability problems are solved. As the concept and practices of a sustainable built environment have evolved over the years, it is increasingly recognized that the scope should be expanded beyond individual buildings to the community scale. Written by an international team of engineers, architects, and environmental experts this second edition includes new HVAC technologies for heating and cooling, energy effect technologies for lighting, and new construction materials which improve heating and cooling efficiencies. This new edition will also include critical updates on international codes: LEED, BREEAM, and Green Globes.
The Engineer's Guide to Plant Layout and Piping Design for the Oil and Gas Industries gives pipeline engineers and plant managers a critical real-world reference to design, manage, and implement safe and effective plants and piping systems for today's operations. This book fills a training void with complete and practical understanding of the requirements and procedures for producing a safe, economical, operable and maintainable process facility. Easy to understand for the novice, this guide includes critical standards, newer designs, practical checklists and rules of thumb. Due to a lack of structured training in academic and technical institutions, engineers and pipe designers today may understand various computer software programs but lack the fundamental understanding and implementation of how to lay out process plants and run piping correctly in the oil and gas industry. Starting with basic terms, codes and basis for selection, the book focuses on each piece of equipment, such as pumps, towers, underground piping, pipe sizes and supports, then goes on to cover piping stress analysis and the daily needed calculations to use on the job.
For courses in Motor Controls, Electric Machines, Power Electronics, and Electric Power. This best-selling text employs a theoretical, practical, multidisciplinary approach to provide introductory students with a broad understanding of modern electric power. The scope of the book reflects the rapid changes that have occurred in power technology over the past few years-allowing the entrance of power electronics into every facet of industrial drives, and expanding the field to open more career opportunities.
Demonstrating the potential of building strong brands in the energy sector, this book explores the challenges of shifting the perception of energy from a commodity business into a consumer brand. Energy suppliers are increasingly being met with skepticism, indicating the need for a greater focus on marketing and branding in the energy industry. The author examines both perspectives of energy as a commodity business and a consumer brand, as well as the perception of energy consumers across Europe. Topics discussed include green energy, the liberalisation of the electricity industry, and the relationship between consumers and executives in the energy market. One of the first of its kind, this book offers a unique and innovative study of the development of branding in the energy industry, and sheds light on future marketing strategies.
Discusses the latest results in academia and industry on green composites. Existing machinability problems like low processability and reduction of the ductility are addressed and discussed in relation to use of adhesion promoters, additives or chemical modification of the filler to overcome these problems. Recent industrial efforts to minimize the environmental impact, e.g. biodegradable polymer matrix, renewable sources complete the approach.
This thesis focuses on the design and synthesis of novel one-dimensional colloidal chalcogenide hetero-nanostructures for enhancing solar energy conversion applications. Semiconducting nanomaterials are particular attractive for energy conversion due to the quantum confinement effects dictating their unique optical and electronic properties. Steering the photo-induced charge-flow based on unique bandgap alignment in semiconductor heterojunctions is critical for photo-electric/chemical conversion. The author presents the controllable preparation strategies to synthesize 1D chalcogenide hetero-nanostructures with various fine structures, further been used as excellent template materials for preparing other novel and complex hybrid architectures through a series of chemical transformations. The heterogeneous growth mechanisms of novel hetero-nanostructures is studied for developing a facile and general method to prepare more novel heterostructures. The band gap structure simulations, detailed charge carrier behaviour and unique solar energy conversion properties of the prepared hybrid nanostructures are deeply investigated. This work would open a new door to rationally designing hybrid systems for photo-induced applications.
This manual's latest edition continues to be the best source available for making accurate, reliable man-hour estimates for electrical installation. This new edition is revised and expanded to include installation of electrical instrumentation, which is used in monitoring various process systems.
This book presents selected papers from the 2021 International Conference on Electrical and Electronics Engineering (ICEEE 2020), held on January 2-3, 2021. The book focuses on the current developments in various fields of electrical and electronics engineering, such as power generation, transmission and distribution; renewable energy sources and technologies; power electronics and applications; robotics; artificial intelligence and IoT; control, automation and instrumentation; electronics devices, circuits and systems; wireless and optical communication; RF and microwaves; VLSI; and signal processing. The book is a valuable resource for academics and industry professionals alike.
This book offers a comprehensive introduction to novel absorption heating technologies for improving the energy efficiency of heating systems. The proposed low-temperature heating systems, based on an air source absorption heat pump (ASAHP), significantly increase heating efficiency and reduce pollution emissions. As the performance of ASAHPs deteriorates at lower ambient/driving temperatures, a series of advanced cycles is used to extend their applicability, with the compression-assisted ASAHP being the most outstanding example. The book discusses the generator-absorber-heat-exchange ASAHP as a promising solution to make the best of high driving temperatures, an aspect that can be improved further via compression. Further, it addresses the ground source absorption heat pump (GSAHP), which eliminates the soil thermal imbalance of the conventional ground source electrical heat pump (GSEHP), and also reduces the number of boreholes . Various hybrid GSAHP systems are proposed to further enhance applicability, efficiency, and economy: these include a combined GSAHP and GSEHP system, as well as ASAHP and GSAHP systems that incorporate design optimizations. In closing, the book explores the merits of novel working fluids and highlights recent advances concerning waste heat and renewable energy utilization.
Materials and Water Chemistry for Supercritical Water-cooled Reactors is unique in that it brings together materials and water chemistry, their interrelationship, the historical perspective and their application to SCWR conceptual design. Written by world's leading experts, all active in the area of materials and chemistry R&D in support of GEN IV SCWR, this book presents for the first time a comprehensive reference on these topics, and in particular, how these data relate to the SCWR design itself. This book is an essential text for researchers in the areas of supercritical water-cooled reactor materials and chemistry, working in industry or academia. It will also give newcomers to the field a survey of all of the available literature and a clear understanding of how these studies relate to the design of the SCWR concept. The material presented is at a specialist's level in materials or corrosion science, or in water chemistry of power plants.
This book focuses on modelling and simulation, control and optimization, signal processing, and forecasting in selected nonlinear dynamical systems, presenting both literature reviews and novel concepts. It develops analytical or numerical approaches, which are simple to use, robust, stable, flexible and universally applicable to the analysis of complex nonlinear dynamical systems. As such it addresses key challenges are addressed, e.g. efficient handling of time-varying dynamics, efficient design, faster numerical computations, robustness, stability and convergence of algorithms. The book provides a series of contributions discussing either the design or analysis of complex systems in sciences and engineering, and the concepts developed involve nonlinear dynamics, synchronization, optimization, machine learning, and forecasting. Both theoretical and practical aspects of diverse areas are investigated, specifically neurocomputing, transportation engineering, theoretical electrical engineering, signal processing, communications engineering, and computational intelligence. It is a valuable resource for students and researchers interested in nonlinear dynamics and synchronization with applications in selected areas.
This book presents a new approach to building renovation, combining aspects of various professional disciplines, integrating green building design, structural stability, and energy efficiency. It draws attention to several often-overlooked qualities of buildings that should be comprehensively integrated into the context of building renovation. The book presents an overview of the most important renovation approaches according to their scope, intensity, and priorities. Combining basic theoretical knowledge and the authors' scientific research it emphasizes the importance of simultaneous consideration of energy efficiency and structural stability in building renovation processes. It simultaneously analyses the effects of various renovation steps related to the required level of energy efficiency, while it also proposes the options of building extension with timber-glass upgrade modules as the solution to a shortage of usable floor areas occurring in large cities. This book offers building designers and decision makers a tool for predicting energy savings in building renovation processes and provides useful guidelines for architects, city developers and students studying architecture and civil engineering. Additionally, it demonstrates how specific innovations, e.g., building extensions with timber-glass modules, can assist building industry companies in the planning and development of their future production. The main aim of the current book is to expose various approaches to the renovation of existing buildings and to combine practical experience with existing research, in order to disseminate knowledge and raise awareness on the importance of integrative and interdisciplinary solutions.
This book provides energy efficiency quantitative analysis and optimal methods for discrete manufacturing systems from the perspective of global optimization. In order to analyze and optimize energy efficiency for discrete manufacturing systems, it uses real-time access to energy consumption information and models of the energy consumption, and constructs an energy efficiency quantitative index system. Based on the rough set and analytic hierarchy process, it also proposes a principal component quantitative analysis and a combined energy efficiency quantitative analysis. In turn, the book addresses the design and development of quantitative analysis systems. To save energy consumption on the basis of energy efficiency analysis, it presents several optimal control strategies, including one for single-machine equipment, an integrated approach based on RWA-MOPSO, and one for production energy efficiency based on a teaching and learning optimal algorithm. Given its scope, the book offers a valuable guide for students, teachers, engineers and researchers in the field of discrete manufacturing systems.
Energy from Waste is a concise, up-to-date and accessible guide on how to create power from both urban and industrial waste. The book explores the types of waste that, instead of going to landfill, can be converted to energy, also discussing the most up-to-date technologies for doing so. The book contains a strong emphasis on the related environmental impacts and economic factors involved in the various methods of generating electricity, making this a valuable and insightful read for those involved in the management and conversion of waste, including energy engineers, managers and technicians.
This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system's design and sizing. It also helps readers understand the dispatch methodology and how to connect the system's different components, their modeling, and the cost analysis of the system.
Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, Second Edition continues to be the most advanced, up-to-date and research-focused text on all aspects of wind energy engineering. Covering a wider spectrum of topics in the field of wind turbines (offshore and onshore), this new edition includes new intelligent turbine designs and optimization, current challenges and efficiencies, remote sensing and smart monitoring, and key areas of advancement, such as floating wind turbines. Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most forward-thinking professionals in the field, and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers. |
![]() ![]() You may like...
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Radioactive Waste Management and…
W. E Lee, Michael I. Ojovan, …
Hardcover
R6,973
Discovery Miles 69 730
Clean Energy and Resources Recovery…
Vinay Kumar Tyagi, Kaoutar Aboudi
Paperback
R3,710
Discovery Miles 37 100
Bioenergy Engineering - Fundamentals…
Krushna Prasad Shadangi, Prakash Kumar Sarangi, …
Paperback
R4,858
Discovery Miles 48 580
Science, Technology, and Innovation for…
Ademola A. Adenle, Marian R. Chertow, …
Hardcover
R3,172
Discovery Miles 31 720
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,171
Discovery Miles 21 710
|