![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering
Nanowires for Energy Applications, Volume 98, covers the latest breakthrough research and exciting developments in nanowires for energy applications. This volume focuses on various aspects of Nanowires for Energy Applications, presenting interesting sections on Electrospun semiconductor metal oxide nanowires for energy and sensing applications, Integration into flexible and functional materials, Nanowire Based Bulk Heterojunction Solar Cells, Semiconductor Nanowires for Thermoelectric Generation, Energy Scavenging: Mechanical, Thermoelectric, and Nanowire synthesis/growth methods, and more.
This book provides a concise introduction to the physical foundations of the electro-discharge technology and applies it to the drilling of wells, the demolition of reinforced concrete objects, and the cutting of cracks in rocks and concrete. The electro-physical basis of this technology and the technical implementation of using spark discharge as a "working tool" in the above-mentioned contexts are also briefly considered. The book is intended for all scientists and experts working in the field of resource exploration and extraction, those engaged in building new objects, and in reconstructing or demolishing old ones. It can also be used as a textbook by students and postgraduates, deepening their knowledge of these innovative technologies.
Like electricity and water, data and computing power are necessary commodities in the modern-day economy. A model for the effective regulation and provisioning of computational services will follow a similar paradigm as the existent model for traditional utilities. Emerging Research Surrounding Power Consumption and Performance Issues in Utility Computing explores methods of treating computing resources and materials as a standard utility, charging customers based on their usage and promoting competition among service providers. Including both benefits and hindrances, as well as theoretical concepts and practical considerations, this book provides an in-depth discussion of the utility computing paradigm for computer engineers, service providers, consumers, and academics in the field of computer science. This book includes emerging research on subjects including, but not limited to, Graphical Processing Unit (GPU) architectures, green computing, VMware, and device manufacturing techniques.
This book provides a clear and basic understanding of the concept of reservoir engineering to professionals and students in the oil and gas industry. The content contains detailed explanations of key theoretic and mathematical concepts and provides readers with the logical ability to approach the various challenges encountered in daily reservoir/field operations for effective reservoir management. Chapters are fully illustrated and contain numerous calculations involving the estimation of hydrocarbon volume in-place, current and abandonment reserves, aquifer models and properties for a particular reservoir/field, the type of energy in the system and evaluation of the strength of the aquifer if present. The book is written in oil field units with detailed solved examples and exercises to enhance practical application. It is useful as a professional reference and for students who are taking applied and advanced reservoir engineering courses in reservoir simulation, enhanced oil recovery and well test analysis.
Elements of Oil and Gas Well Tubular Design offers insight into the complexities of oil well casing and tubing design. The book's intent is to be sufficiently detailed on the tubular-oriented application of the principles of solid mechanics while at the same time providing readers with key equations pertintent to design. It addresses the fundamentals of tubular design theory, bridging the gap between theory and field operation. Filled with derivations and detailed solutions to well design examples, Elements of Oil and Gas Well Tubular Design provides the well designer with sound engineering principles applicable to today's oil and gas wells.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
Re-exploration Programs for Petroleum-Rich Sags in Rift Basins covers the geological characteristics and potential of oil-rich depressions in a rifted basin. It describes up-to-date research and technology, detailing the current status of exploration. The overall aim of the book is to guide a new round of hydrocarbon exploration of petroleum-rich depressions, contributing to breakthroughs in re-exploration and a substantial increase in reserves. Chapters discuss the reservoir forming theory of oil-rich depressions, characters of hydrocarbon migration and accumulation in a weak structure slope, key elements of reservoir forming of deep buried hills and inner curtains, and more. Other topics covered include complex subtle reservoir recognition techniques, deep layer and buried hill high speed drill technology, recognition of buried hill reservoir and hydrocarbon, high efficiency enhanced oil recovery, and finally, methods of secondary exploration of oil-rich depressions and the development of a workflow to guide research and exploration.
A metaheuristic is a consistent set of ideas, concepts, and operators to design a heuristic optimization algorithm, that can provide a sufficiently good solution to an optimization problem with incomplete or imperfect information. Modern and emerging power systems, with the growing complexity of distributed and intermittent generation, are an important application for such methods. This book describes the principles of solving various problems in power engineering via the application of selected metaheuristic optimization methods including genetic algorithms, particle swarm optimization, and the gravitational search algorithm. Applications covered include power flow calculation; optimal power flow in transmission networks; optimal reactive power dispatch in transmission networks; combined economic and emission dispatch; optimal power flow in distribution networks; optimal volt/var control in distribution networks; optimal placement and sizing of distributed generation in distribution networks; optimal energy and operation management of microgrids; optimal coordination of directional overcurrent relays; and steady-state analysis of self-excited induction generators.
This is the second revised and enhanced edition of the book Gas Turbine Design, Components and System Integration written by a world-renowned expert with more than forty years of active gas turbine R&D experience. It comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.
This book investigates the role of the National Petroleum Council (CNP) and especially of Petrobras in the construction and shaping of courses in Geosciences, as part of the historical process of the search for and exploration of oil, which began in Brazil in 1864 and ended in 1968 with the discovery of the first offshore well. The book explores the history of the discovery of oil in Brazil together with the historical development of oil research and geosciences in Brazil. It also elucidates significant events and developments which occurred between 1864 and 1968 such as the foundation of the Ouro Preto Mining School, the foundation of the CNP and Petrobras and other scientific societies and universities and their contributions to the formation and constitution of geosciences in Brazil. This book also discusses the massive investments by CNP and Petrobras in technical and scientific research for oil exploration in the Brazilian territory.This unique book appeals to scientists, students and professionals in geosciences, history and related fields.
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.
This book comprising seven parts is organized under two sections. The first section deals with environment containing four parts, whereas the second section, containing three parts, is on energy. The first part deals with some aspects of hydrologic impacts of global warming and anthropogenic changes. Part II is on bio-environment and discusses plants, biomass, and bacterial species. Part III focuses on chemical environment. Section one is concluded with Part IV on social environment. Section two starts out with Part V on solar energy. Hydropower is discussed in Part VI. The concluding Part VII deals with biogas. The book will be of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management may find the book to be of value.
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
As energy technology has emerged as an essential way to provide efficiency and environmental safety, monitoring these energy sources is a way of measuring the effectiveness of the applications and the fundamentals of each design. Technology and Energy Sources Monitoring: Control, Efficiency, and Optimization provides an overall understanding of the technology and energy processes of renewable energy sources, biomaterials and more. By outlining the primary intent of the applications of energy technology and sustainable energy systems development, this book aims to bring a deeper understanding of the innovations and measures taken towards the monitoring of energy sources.
This book presents an authoritative and comprehensive overview of the production and use of microalgal biomass and bioproducts for energy generation. It also offers extensive information on engineering approaches to energy production, such as process integration and process intensification in harnessing energy from microalgae. Issues related to the environment, food, chemicals and energy supply pose serious threats to nations' success and stability. The challenge to provide for a rapidly growing global population has made it imperative to find new technological routes to increase the production of consumables while also bearing in mind the biosphere's ability to regenerate resources. Microbial biomass is a bioresource that provides effective solutions to these challenges. Divided into eight parts, the book explores microalgal production systems, life cycle assessment and the bio-economy of biofuels from microalgae, process integration and process intensification applied to microalgal biofuels production. In addition, it discusses the main fuel products obtained from microalgae, summarizing a range of useful energy products derived from algae-based systems, and outlines future developments. Given the book's breadth of coverage and extensive bibliography, it offers an essential resource for researchers and industry professionals working in renewable energy.
This book, based on the research experience and outcomes of a group of international contributors, addresses a range of advanced energy efficiency technologies and their applications in solar heating, cooling and power generation, while also providing solutions for tackling recurring low efficiency problems in today's systems. It highlights the latest technologies and methods, which can significantly improve the performance of solar systems, enabling readers to design, construct and apply high-performance solar systems in or for their own projects. The contributors provide a systematic introduction to state-of-the-art energy efficiency technologies that demonstrates how to implement innovative solar systems. These technologies include: * heat pipes and loop heat pipes; * phase change materials (PCMs) and PCM slurries; * micro-channel panels; * desiccant/adsorption cycling; * ejector cooling and heat pumps; and * solar concentration and thermoelectric units. The book shows how innovative solar systems applicable to rural and urban buildings can be analysed and demonstrates the successful implementation of these advanced technologies. It delivers the design principles and associated energy performance assessment methods for a range of selected solar heating, cooling and power generation projects. This book offers a valuable source of information for final-year undergraduate students, as well as graduate students and academic lecturers, as it promotes the widespread deployment of advanced solar heating, cooling and power generation technologies applicable for buildings across the globe. The book is also a good point of reference for design engineers and energy consultants who wish to extend their knowledge of advanced technologies used to achieve energy efficiency.
This book presents original, peer-reviewed research papers from the 4th Purple Mountain Forum -International Forum on Smart Grid Protection and Control (PMF2019-SGPC), held in Nanjing, China on August 17-18, 2019. Addressing the latest research hotspots in the power industry, such as renewable energy integration, flexible interconnection of large scale power grids, integrated energy system, and cyber physical power systems, the papers share the latest research findings and practical application examples of the new theories, methodologies and algorithms in these areas. As such book a valuable reference for researchers, engineers, and university students.
This book presents a new and innovative approach for the use of heat pipes and their application in a number of industrial scenarios, including space and nuclear power plants. The book opens by describing the heat pipe and its concept, including sizing, composition and binding energies. It contains mathematical models of high and low temperature pipes along with extensive design and manufacturing models, characteristics and testing programs. A detailed design and safety analysis concludes the book, emphasizing the importance of heat pipe implementation within the main cooling system and within the core of the reactor, making this book a useful resource for students, engineers, and researchers.
This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.
Renewable Energy Powered Desalination Handbook: Applications and Thermodynamics offers a practical handbook on the use of renewable technologies to produce freshwater using sustainable methods. Sections cover the different renewable technologies currently used in the field, including solar, wind, geothermal and nuclear desalination. This coverage is followed by an equally important clear and rigorous discussion of energy recovery and the thermodynamics of desalination processes. While seawater desalination can provide a climate-independent source of drinking water, the process is energy-intensive and environmentally damaging. This book provides readers with the latest methods, processes, and technologies available for utilizing renewable energy applications as a valuable technology. Desalination based on the use of renewable energy sources can provide a sustainable way to produce fresh water. It is expected to become economically attractive as the costs of renewable technologies continue to decline and the prices of fossil fuels continue to increase.
Progress in Optics, Volume 63 is the latest release in a series that presents an overview of the state-of-the-art in optics research. In this update, readers will find timely chapters on measuring polarization states, quantum measurement, optical trapping, spatial/spectral correspondence for mono/poly chromatic light diffraction, and photonic fractional signal processing, amongst other timely topics.
Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. But the batteries of these vehicles also need to be charged at times when their users need them. Thus, V2G (vehicle-to-grid) is becoming an important issue in the future grid. An integrated treatment of this system, from power generation, monitoring, storage in stationary and PEV batteries to control is a complex task. This book explores the connection between the stationary grid and PEV power storage. Topics covered include: the impact of PEVs and V2G on smart grid and renewable energy systems; distributed energy resource with PEV battery energy storage in the smart grid; power conversion technology in smart grid and PEVs; power control and monitoring of smart grid with PEVs; PEV charging technologies and V2G on distributed energy resources and utility interfaces; economic, social and environmental dimensions of PEVs in the smart grid. This book will be of interest to researchers and advanced students in electric vehicles and smart grid technologies, and policy-makers and planners developing smart grid infrastructure and sustainable transport initiatives. |
You may like...
Advances in Hydrogen Production, Storage…
Adolfo Iulianelli, Angelo Basile
Hardcover
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
Bioenergy Engineering - Fundamentals…
Krushna Prasad Shadangi, Prakash Kumar Sarangi, …
Paperback
R4,682
Discovery Miles 46 820
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Risk Assessment and Management for Ships…
Yong Bai, Jeom Kee Paik
Paperback
R5,740
Discovery Miles 57 400
|