![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering
This book introduces the electromagnetic compatibility(EMC) of electric vehicle(EV), including EMC of the whole vehicle, electromagnetic interference(EMI) prediction and suppression of motor drive system, EMI prediction and suppression of DC-DC converter, electromagnetic field safety and EMC of wireless charging system, signal integrity and EMC of the vehicle controller unit(VCU), EMC of battery management system(BMS), electromagnetic radiated emission diagnosis and suppression of the whole vehicle, etc. The analysis method, modeling and simulation method, test method and rectification method of EMC are demonstrated. The simulation and experimental results are presented as tables and figures. This book is useful as reference for graduate students, senior undergraduates and engineering technicians of vehicle engineering related majors. For EMI prediction, suppression and EMC optimization design for EVs, this book provides reference for engineers to solve EMC problems. This book is intended for senior undergraduates, postgraduates, lecturers and laboratory researchers engaged in electric vehicle and electromagnetic compatibility research.
Surface passivation of silicon solar cells describes a technology for preventing electrons and holes to recombine prematurely with one another on the wafer surface. It increases the cell's energy conversion efficiencies and thus reduces the cost per kWh generated by a PV system. In the past few years, new tools have been developed to ensure low cost of ownership for high volume production of passivated silicon solar cells. Different deposition techniques (ALD, PECVD, APCVD) and different materials (SiO2, Al2O3, Si3N4) have been tested during the development process of more than 10 years. Now, the silicon solar cell manufacturing industry is picking up the concept of rear side passivation. The next generation silicon solar cells in production will be the PERC (Passivated Emitter and Rear Cell) type using all the reported achievements including novel tool concepts and process technologies. This timely overview of silicon solar cell surface passivation, written by the leading experts in the field, is a key read for students and researchers working with silicon solar cells, as well as solar cell manufacturers.
This book provides an overview of the multi-dimensional approach for the production of ethanol from lignocellulosic biomass. The sustainability of this biofuel, the current and future status of the technology and its role in waste valorization are also addressed. Bioethanol from lignocellulosic material has emerged as an alternative to the traditional first-generation bioethanol. The book also discusses various pretreatment methods for effective separation of the various components of lignocellulosic feedstock as well as their advantages, and limitations. It describes the valorization of lignocellulosic waste through the production of bioethanol and emphasizes the significance of waste utilization in managing the production cost of the fuel. Finally, the utilization of genetically engineered plants and microorganisms to increase the conversion efficiency is reviewed.
Energy: Technology and Directions for the Future presents the
fundamentals of energy for scientists and engineers. It is a survey
of energy sources that will be available for use in the 21st
century energy mix. The reader will learn about the history and
science of several energy sources as well as the technology and
social significance of energy. Themes in the book include
thermodynamics, electricity distribution, geothermal energy, fossil
fuels, solar energy, nuclear energy, alternate energy (wind, water,
biomass), energy and society, energy and the environment,
sustainable development, the hydrogen economy, and energy
forecasting. The approach is designed to present an intellectually
rich and interesting text that is also practical.This is
accomplished by introducing basic concepts in the context of energy
technologies and, where appropriate, in historical context.
Scientific concepts are used to solve concrete engineering
problems.
This revised and updated 3rd edition of the book allows readers to develop a practical understanding of the major aspects of energy. It also includes two new chapters addressing renewable energy, and energy management and economics. The book begins by introducing basic definitions, and then moves on to discuss the primary and secondary energy types, internal energy and enthalpy, and energy balance, heat of reaction and heat transfer. Each chapter features fully solved example problems and practice problems to support learning and the application of the topics discussed, including: energy production and conversion; energy conservation; energy storage; energy coupling; sustainability in energy systems; renewable energy; and energy management and economics. Written for students across a range of engineering and science disciplines, the book provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. A updated solutions manual to this textbook's problems ais available to course instructors on request from the author and online on www.springer.com.
This book presents the proceedings of the 5th Edition of the Brazilian Technology Symposium (BTSym). This event brings together researchers, students and professionals from the industrial and academic sectors, seeking to create and/or strengthen links between issues of joint interest, thus promoting technology and innovation at nationwide level. The BTSym facilitates the smart integration of traditional and renewable power generation systems, distributed generation, energy storage, transmission, distribution and demand management. The areas of knowledge covered by the event are Smart Designs, Sustainability, Inclusion, Future Technologies, IoT, Architecture and Urbanism, Computer Science, Information Science, Industrial Design, Aerospace Engineering, Agricultural Engineering, Biomedical Engineering, Civil Engineering, Control and Automation Engineering, Production Engineering, Electrical Engineering, Mechanical Engineering, Naval and Oceanic Engineering, Nuclear Engineering, Chemical Engineering, Probability and Statistics.
What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.
This book offers a comprehensive reference guide to the important topics of fault analysis and protection system design for DC grids, at various voltage levels and for a range of applications. It bridges a much-needed research gap to enable wide-scale implementation of energy-efficient DC grids. Following an introduction, DC grid architecture is presented, covering the devices, operation and control methods. In turn, analytical methods for DC fault analysis are presented for different types of faults, followed by separate chapters on various DC fault identification methods, using time, frequency and time-frequency domain analyses of the DC current and voltage signals. The unit and non-unit protection strategies are discussed in detail, while a dedicated chapter addresses DC fault isolation devices. Step-by-step guidelines are provided for building hardware-based experimental test setups, as well as methods for validating the various algorithms. The book also features several application-driven case studies.
Here's the ideal tool if you're looking for a flexible,
straightforward analysis system for your everyday design and
operations decisions. This new third edition includes sections on
stations, geographical information systems, "absolute" versus
"relative" risks, and the latest regulatory developments. From
design to day-to-day operations and maintenance, this unique volume
covers every facet of pipeline risk management, arguably the most
important, definitely the most hotly debated, aspect of pipelining
today.
This is a valuable addition to any reservoir engineer's library,
containing the basics of well testing methods as well as all of the
latest developments in the field. Not only are "evergreen"
subjects, such as layered reservoirs, naturally fractured
reservoirs, and wellbore effects, covered in depth, but newer
developments, such as well testing for horizontal wells, are
covered in full chapters.
This book is focused on addressing the designs of FinFET-based analog ICs for 5G and E-band communication networks. In addition, it also incorporates some of the contemporary developments over different fields. It highlights the latest advances, problems and challenges and presents the latest research results in the field of mm-wave integrated circuits designing based on scientific literature and its practical realization. The traditional approaches are excluded in this book. The authors cover various design guidelines to be taken care for while designing these circuits and detrimental scaling effects on the same. Moreover, Gallium Nitrides (GaN) are also reported to show huge potentials for the power amplifier designing required in 5G communication network. Subsequently, to enhance the readability of this book, the authors also include real-time problems in RFIC designing, case studies from experimental results, and clearly demarking design guidelines for the 5G communication ICs designing. This book incorporates the most recent FinFET architecture for the analog IC designing and the scaling effects along with the GaN technology as well.
This book gathers contributions from a multidisciplinary research team comprised of control engineering and economics researchers and formed to address a central interdisciplinary social issue, namely economically enabled energy management. The book's primary focus is on achieving optimal energy management that is viable from both an engineering and economic standpoint. In addition to the theoretical results and techniques presented, several chapters highlight experimental case studies, which will benefit academic researchers and practitioners alike. The first three chapters present comprehensive overviews of respective social contexts, underscore the pressing need for economically efficient energy management systems and academic work on this emerging research topic, and identify fundamental differences between approaches in control engineering and economics. In turn, the next three chapters (Chapters 4-6) provide economics-oriented approaches to the subject. The following five chapters (Chapters 7-11) address optimal energy market design, integrating both physical and economic models. The book's last three chapters (Chapters 12-14) mainly focus on the engineering aspects of next-generation energy management, though economic factors are also shown to play important roles.
Waste to Energy deals with the very topical subject of converting the calorific content of waste material into useful forms of energy. It complements and, to a certain degree, overlaps with its companion volume, "Biomass to Biofuels", since a significant proportion of biomass converted to energy nowadays originates from various types of waste. The material in the first, more substantial part of the volume has been arranged according to the type of process for energy conversion. Biochemical processes are described in six articles. These relate to the production of methane by anaerobic digestion; reactor conversion efficiencies; investigations on ethanol production from biodegradable municipal solid waste through hydrolysis and fermentation; hydrogen production from glucose through a hybrid anaerobic and photosynthetic process; biodiesel production from used cooking oil through base-catalyzed transesterification. Conversions by thermochemical processes are discussed in the subsequent eleven articles of the volume.These cover combustion, the direct use of heat energy; using the heat produced in thermal power stations for steam and, ultimately, electricity generation; municipal solid waste and refuse-derived fuel. In another article, computational fluid dynamics modelling is applied to assess the influence of process parameters and to perform optimization studies. A group of articles deal with more complex thermochemical processes involving combustion combined with pyrolysis and gasification. Two articles focus on biofuels as feed for fuel cells. In the last six articles, the emphasis is on management and policy rather than technical issues.
This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.
This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.
This book addresses the concepts of unstable flow solutions, convective instability and absolute instability, with reference to simple (or toy) mathematical models, which are mathematically simple despite their purely abstract character. Within this paradigm, the book introduces the basic mathematical tools, Fourier transform, normal modes, wavepackets and their dynamics, before reviewing the fundamental ideas behind the mathematical modelling of fluid flow and heat transfer in porous media. The author goes on to discuss the fundamentals of the Rayleigh-Benard instability and other thermal instabilities of convective flows in porous media, and then analyses various examples of transition from convective to absolute instability in detail, with an emphasis on the formulation, deduction of the dispersion relation and study of the numerical data regarding the threshold of absolute instability. The clear descriptions of the analytical and numerical methods needed to obtain these parametric threshold data enable readers to apply them in different or more general cases. This book is of interest to postgraduates and researchers in mechanical and thermal engineering, civil engineering, geophysics, applied mathematics, fluid mechanics, and energy technology.
Decommissioning nuclear facilities is a relatively new field, which
has developed rapidly in the last ten years. It involves materials
that may be highly radioactive and therefore require sophisticated
methods of containment and remote handling. The wastes arising from
decommissioning are hazardous and have to be stored or disposed of
safely in order to protect the environment and future generations.
Nuclear decommissioning work must be carried out to the highest
possible standards to protect workers, the general public and the
environment. This book describes the techniques used for
dismantling redundant nuclear facilities, the safe storage of
radioactive wastes and the restoration of nuclear licensed sites.
This book covers terahertz antenna technology for imaging and sensing, along with its various applications. The authors discuss the use of terahertz frequency and photoconductive antenna technology for imaging applications, such as biological and bio-medical applications, non-destructive inspection of fabrics and plastics, analysis of hydration levels or detecting the presence of metallic components in samples, and detecting a variety of materials with unique spectral fingerprints in the terahertz frequency range, such as different types of explosives or several compounds used in the fabrication of medicines. Provides a comprehensive review of terahertz source and detector for imaging and sensing; Discusses photoconductive antenna technology for imaging and sensing; Presents modalities for improving the photoconductive dipole antenna performance for imaging and sensing; Explores applications in tomographic imaging, art conservation and the pharmaceutical and aerospace industries.
This title deals exclusively with theory and practice of gas well
testing, pressure transient analysis techniques, and analytical
methods required to interpret well behavior in a given reservoir
and evaluate reservoir quality, simulation efforts, and forecast
producing capacity. A highly practical edition, this book is
written for graduate students, reservoir/simulation engineers,
technologists, geologists, geophysicists, and technical managers.
The author draws from his extensive experience in
reservoir/simulation, well testing, PVT analysis basics, and
production operations from around the world and provides the reader
with a thorough understanding of gas well test analysis basics. The
main emphasis is on practical field application, where over 100
field examples are resented to illustrate basic methods for
analysis. Simple solutions to the diffusivity equation are
discussed and their physical meanings examined. Each chapter
focuses in how to use the information gained in well testing to
make engineering and economic decisions, and an overview of the
current research models and their equations are discussed in
relation to gas wells, homogenous, heterogeneous, naturally and
hydraulically fractured reservoirs.
The book provides the most up-to-date information on testing and
development of hydroprocessing catalysts with the aim to improve
performance of the conventional and modified catalysts as well as
to develop novel catalytic formulations. Besides diverse chemical
composition, special attention is devoted to pore size and pore
volume distribution of the catalysts. Properties of the catalysts
are discussed in terms of their suitability for upgrading heavy
feeds. For this purpose atmospheric residue was chosen as the base
for defining other heavy feeds which comprise vacuum gas oil,
deasphalted oil and vacuum residues in addition to topped heavy
crude and bitumen. Attention is paid to deactivation with the aim
to extent catalyst life during the operation. Into consideration is
taken the loss of activity due to fouling, metal deposition, coke
formed as the result of chemical reaction and poisoning by nitrogen
bases. Mathematical models were reviewed focussing on those which
can simulate performance of the commercial operations.
Configurations of hydroprocessing reactors were compared in terms
of their capability to upgrade various heavy feeds providing that a
suitable catalyst was selected. Strategies for regeneration,
utilization and disposal of spent hydroprocesing catalysts were
evaluated. Potential of the non-conventional hydroprocessing
involving soluble/dispersed catalysts and biocatalysts in
comparison with conventional methods were assessed to identify
issues which prevent commercial utilization of the former. A
separate chapter is devoted to catalytic dewaxing because the
structure of dewaxing catalysts is rather different than that of
hydroprocessing catalysts, i.e., the objective of catalytic
dewaxing is different than that of the conventional
hydroprocessing, The relevant information in the scientific
literature is complemented with the Patent literature covering the
development of catalysts and novel reactor configurations.
This book gathers the proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (MICRADS), held at the Eloy Alfaro Military Academy (ESMIL) in Quito, Ecuador, on May 13-15,2020. It covers a broad range of topics in systems, communication, and defense; strategy and political-administrative vision in defense; and engineering and technologies applied to defense. Given its scope, it offers a valuable resource for practitioners, researchers, and students alike.
This book systematically reviews the history of lead-free piezoelectric materials, including the latest research. It also addresses a number of important issues, such as new types of materials prepared in a multitude of sizes, structural and physical properties, and potential applications for high-performance devices. Further, it examines in detail the state of the art in lead-free piezoelectric materials, focusing on the pathways to modify different structures and achieve enhanced physical properties and new functional behavior. Lastly, it discusses the prospects for potential future developments in lead-free piezoelectric materials across disciplines and for multifunctional applications. Given its breadth of coverage, the book offers a comprehensive resource for graduate students, academic researchers, development scientists, materials producers, device designers and applications engineers who are working on or are interested in advanced lead-free piezoelectric materials. |
![]() ![]() You may like...
The 2011 Fukushima Nuclear Power Plant…
Yotaro Hatamura, Seiji Abe, …
Paperback
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,234
Discovery Miles 22 340
Advances in Hydrogen Production, Storage…
Adolfo Iulianelli, Angelo Basile
Hardcover
Bioenergy Engineering - Fundamentals…
Krushna Prasad Shadangi, Prakash Kumar Sarangi, …
Paperback
R4,976
Discovery Miles 49 760
|