![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering
This book presents a compilation of selected papers from the Fourth International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection of Nuclear Power Plant, held in August 2019 in Guiyang, China. The purpose of the symposium was to discuss inspection, testing, certification and research concerning the software and hardware of instrument and control (I&C) systems used at nuclear power plants (NPP), such as sensors, actuators and control systems. The event provides a venue for exchange among experts, scholars and nuclear power practitioners, as well as a platform for the combination of teaching and research at universities and enterprises to promote the safe development of nuclear power plants. Readers will find a wealth of valuable insights into achieving safer and more efficient instrumentation and control systems.
This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.
This book is the result of recent research that deals with the built environment and innovative materials, carried out by specialists working in universities and centers of research in different professional fields architecture, engineering, physics and in an area that that spans from the Mediterranean Sea to the Persian Gulf, and from South Eastern Europe to the Middle East. This book takes the necessity of re-shaping the concept of building design in order to transform buildings from large scale energy consumers to energy savers and producers into consideration. The book is organized in two parts: theory and case studies. For the theoretical part, we chose from the wide range of sources that provide energy efficient materials and systems the two that seem to be endless: the sun and vegetation. Their use in building products represents a tool for specialists in the architectural design concept. The case-studies presented analyze different architectural programs, in different climates, from new buildings to rehabilitation approaches and from residential architecture to hospitals and sports arenas; each case emphasizes the interdisciplinarity of the building design activity in order to help readers gain a better understanding of the complex approach needed for energy efficient building design
This book summarizes the latest research on advanced intelligent systems in the fields of energy and electrical engineering, presented at the second edition of the International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD'2019), held in Marrakech from 8 to 11 July 2019, Morocco. This book is intended for researchers, professionals and anyone interested in the development of advanced intelligent systems in the electrical engineering sector. The solutions featured focus on three main areas: motion control in complex electromechanical systems, including sensorless control; fault diagnosis and fault-tolerant control of electric drives; and new control algorithms for power electronics converters. In addition, the book includes a range of research using new technologies and advanced approaches. Offering a platform for researchers in the field of energy to share their work related to the problem of management and optimization of energy, which is a major current concern, the book mainly focuses on areas that go hand in hand with the Industrial Revolution 4.0, such as solar energy computing systems, smart grids, hydroelectric power computing systems, thermal and recycling computing systems, eco-design intelligent computing systems, renewable energy for IT equipment, modeling green technology, and renewable energy systems in smart cities. The authors of each chapter report the state of the art in the topics addressed and the results of their own research, laboratory experiments, and successful applications in order to share the concept of advanced intelligent systems and appropriate tools and techniques for modeling, storage management, as well as decision support in the field of electrical engineering. Further, the book discusses a number of future trends and the potential for linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing.
This book contains selected papers presented during the bi-annual World Renewable Energy Network's Med Green Forum aimed at the international community as well as Mediterranean countries. This forum highlights the importance of growing renewable energy applications in two main sectors: Electricity Generation and the Sustainable Building Sector. In-depth chapters highlight the most current research and technological breakthroughs, covering a broad range of renewable energy technologies and applications in all sectors - for electricity production, heating and cooling, agricultural applications, water desalination, industrial applications and for the transport sectors.
As the world continues to evolve technologically, people depend more heavily on energy-dependent systems to fulfill their daily needs. However, as these needs grow, it is important to develop sustainable systems that are reliable, as well as environmentally sound. Sustaining Power Resources through Energy Optimization and Engineering highlights the sustainable development and efficient operation of energy systems being provided to consumers. Featuring emergent research and trends within the area of power optimization and engineering, this book is a crucial reference source for engineers, researchers, sustainability experts, and professionals interested in the improvement and usage of infrastructural energy systems.
This is the fifth volume of a sub series on Road Vehicle Automation published within the Lecture Notes in Mobility. Like in previous editions, scholars, engineers and analysts from all around the world have contributed chapters covering human factors, ethical, legal, energy and technology aspects related to automated vehicles, as well as transportation infrastructure and public planning. The book is based on the Automated Vehicles Symposium which was hosted by the Transportation Research Board (TRB) and the Association for Unmanned Vehicle Systems International (AUVSI) in San Francisco, California (USA) in July 2017.
Providing an introduction to the design of embedded microprocessor systems, this edition covers everything from the initial concept through to debugging the final result. It also includes material on DMA, interrupts and an emphasis throughout on the real-time nature of embedded systems. The book is not limited to describing any specific processor family, but covers the operation of, and interfaces to, several types of processors with an emphasis on cost and design trade-offs Included throughout the book are numerous examples, tips, and pitfalls to help readers find out how to implement faster and better design processes and avoid time-consuming and expensive mistakes. The author describes the entire process of designing circuits, and the software that controls them, assessing the system requirements, as well as testing and debugging systems. In this third edition, there is an expanded section on debug which includes avoiding common hardware, software and interrupt problems. Other added features include an expanded section on system integration and debug to address the capabilities of more recent emulators and debuggers, a section about combination microcontroller/PLD devices, and
This book comprises select proceedings of the 12th Conference on Field and Service Robotics (FSR 2019) focusing on cutting-edge research carried out in different applications of robotics, including agriculture, search and rescue, aerial marine, industrial, and space. It focuses on experiments and demonstrations of robotics applied to complex and dynamic environments and covers diverse applications. The essays are written by leading international experts, making it a valuable resource for researchers and practicing engineers alike.
This book offers students, scientists, and engineers an extensive introduction to the theoretical fundamentals of digital communications, covering single-input single-output (SISO), multiple-input multiple-output (MIMO), and time-variant systems. Further, the main content is supplemented by a wealth of representative examples and computer simulations. The book is divided into three parts, the first of which addresses the principles of wire-line and wireless digital transmission over SISO links. Digital modulation, intersymbol interference, and various detection methods are discussed; models for realistic time-variant, wireless channels are introduced; and the equivalent time-variant baseband system model is derived. This book covers two new topics such as blockwise signal transmission and multicarrier modulation with orthogonal frequency-division multiplexing (OFDM) systems. Since not all readers may be familiar with this topic, Part II is devoted to the theory of linear time-variant systems. The generalized convolution is derived, and readers are introduced to impulse response, the delay spread function, and system functions in the frequency domain. In addition, randomly changing systems are discussed. Several new examples and graphs have been added to this book. In turn, Part III deals with MIMO systems. It describes MIMO channel models with and without spatial correlation, including the Kronecker model. Both linear and nonlinear MIMO receivers are investigated. The question of how many bits per channel use can be transmitted is answered, and maximizing channel capacity is addressed. Principles of space-time coding are outlined in order to improve transmission quality and increase data rates. In closing, the book describes multi-user MIMO schemes, which reduce interference when multiple users in the same area transmit their signals in the same time slots and frequency bands.
The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.
Design, Deployment and Operation of a Hydrogen Supply Chain introduces current energy system and the challenges that may hinder the large-scale adoption of hydrogen as an energy carrier. It covers the different aspects of a methodological framework for designing a HSC, including production, storage, transportation and infrastructure. Each technology's advantages and drawbacks are evaluated, including their technology readiness level (TRL). The multiple applications of hydrogen for energy are presented, including use in fuel cells, combustion engines, as an alternative to natural gas and power to gas. Through analysis and forecasting, the authors explore deployment scenarios, considering the dynamic aspect of HSCs. In addition, the book proposes methods and tools that can be selected for a multi-criteria optimal design, including performance drivers and economic, environmental and societal metrics. Due to its systems-based approach, this book is ideal for engineering professionals, researchers and graduate students in the field of energy systems, energy supply and management, process systems and even policymakers.
This book discusses applying vernacular strategies to modern architectural design to adhere to basic green principles of energy efficiency and materials utilization. Written from an international perspective, chapters present the perspectives and experiences of architects and engineers from across the globe. Historically successful approaches are integrated with modern design concepts to create novel, sustainable, and resource conscious solutions. The scope of topics covered include natural ventilation, cooling and heating, daylight and shading devices, and green micro-climate and functional facades, making this a useful reference for a wide range of researchers and workers in the built environment. Covers the most up-to-date research developments, best practices, and innovations from countries all over the globe; Presents the latest research in vernacular architecture and sustainable building; Contains case studies and examples to enhance practical application of the technologies presented.
This Handbook is the first volume to comprehensively analyse and problem-solve how to manage the decline of fossil fuels as the world tackles climate change and shifts towards a low-carbon energy transition. The overall findings are straight-forward and unsurprising: although fossil fuels have powered the industrialisation of many nations and improved the lives of hundreds of millions of people, another century dominated by fossil fuels would be disastrous. Fossil fuels and associated greenhouse gas emissions must be reduced to a level that avoids rising temperatures and rising risks in support of a just and sustainable energy transition. Divided into four sections and 25 contributions from global leading experts, the chapters span a wide range of energy technologies and sources including fossil fuels, carbon mitigation options, renewables, low carbon energy, energy storage, electric vehicles and energy sectors (electricity, heat and transport). They cover varied legal jurisdictions and multiple governance approaches encompassing multi- and inter-disciplinary technological, environmental, social, economic, political, legal and policy perspectives with timely case studies from Africa, Asia, Australia, Europe, North America, South America and the Pacific. Providing an insightful contribution to the literature and a much-needed synthesis of the field as a whole, this book will have great appeal to decision makers, practitioners, students and scholars in the field of energy transition studies seeking a comprehensive understanding of the opportunities and challenges in managing the decline of fossil fuels.
This book provides recent trends and innovation in solar energy. It covers the basic principles and applications of solar energy systems. Various topics covered in this book include introduction and overview of solar energy, solar PV generation, solar thermal generation, innovative applications of solar energy, smart energy system, smart grid and sustainability, solar energy forecasting, advances in solar battery, thermal storage of solar energy, solar energy pricing, advances in hybrid solar system, solar system tracking for maximum power generation, phase change materials and its application, sensitivity analysis in solar systems, environmental feasibility of solar hybrid systems, regulatory implications of solar energy integration with grid, impact of the photovoltaic integration on the hydrothermal dispatch on power systems and potential and financial evaluation of floating solar PV in Thailand-a case study. This book will be useful for the students, academicians, researchers, policymakers, economists and professionals working in the area of solar energy.
The authors were originally brought together to share research and
applications through the international Danfoss Professor Programme
at Aalborg University in Denmark.
Re-exploration Programs for Petroleum-Rich Sags in Rift Basins covers the geological characteristics and potential of oil-rich depressions in a rifted basin. It describes up-to-date research and technology, detailing the current status of exploration. The overall aim of the book is to guide a new round of hydrocarbon exploration of petroleum-rich depressions, contributing to breakthroughs in re-exploration and a substantial increase in reserves. Chapters discuss the reservoir forming theory of oil-rich depressions, characters of hydrocarbon migration and accumulation in a weak structure slope, key elements of reservoir forming of deep buried hills and inner curtains, and more. Other topics covered include complex subtle reservoir recognition techniques, deep layer and buried hill high speed drill technology, recognition of buried hill reservoir and hydrocarbon, high efficiency enhanced oil recovery, and finally, methods of secondary exploration of oil-rich depressions and the development of a workflow to guide research and exploration.
This book discusses the design and implementation of, as well as experimentation on, an open cross-layer framework and associated methodology to provide voluntary interoperability among heterogeneous Internet of Things (IoT) platforms. It allows readers to effectively and efficiently develop smart IoT applications for various heterogeneous IoT platforms, spanning single and/or multiple application domains. To do so, it provides an interoperable framework architecture for the seamless integration of different IoT architectures present in different application domains. In this regard, interoperability is pursued at various levels: device, network, middleware, services and data.
This book discusses the design and scheduling of residential, industrial, and commercial energy hubs, and their integration into energy storage technologies and renewable energy sources. Each chapter provides theoretical background and application examples for specific power systems including, solar, wind, geothermal, air and hydro. Case-studies are included to provide engineers, researchers, and students with the most modern technical and intelligent approaches to solving power and energy integration problems with special attention given to the environmental and economic aspects of energy storage systems.
This book reflects the current state of knowledge on sustainability in a wide range of fields, from engineering to agriculture, to education. Though primarily intended to offer an update for experts and researchers in the field, it can also be used as a valuable educational tool for relevant undergraduate and graduate courses. Key aspects covered include the better and more responsible engineering and management of energy conversion processes, the development of renewable energy technologies, and improvements in conventional energy utilization and food production. In addition, the book addresses green buildings, the green economy, waste and recycling, water, ecopolitics and social sustainability.
Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
Heat Transfer has been written for undergraduate students in mechanical, nuclear, and chemical engineering programs. The success of Anthony Mill's Basic Heat and Mass Transfer and Heat Transfer continues with two new editions for 1999. The careful ordering of topics in each chapter leads students gradually from introductory concepts to advanced material, eliminating road blocks to developing solid engineering problem-solving skills. Mathematical concepts, from earlier courses, are reviewed on as needed basis refreshing students' memories, and the computational software integrated with the text allows them to obtain reliable numerical results. The integrated coverage of design principles and the wide variety of exercises based on current heat and mass transfer technologies encourages students to think like engineers, better preparing them for the engineering workplace. |
![]() ![]() You may like...
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R6,114
Discovery Miles 61 140
Clean Energy and Resources Recovery…
Vinay Kumar Tyagi, Kaoutar Aboudi
Paperback
R3,710
Discovery Miles 37 100
Single Cell Oils - Microbial and Algal…
Zvi Cohen, Colin Ratledge
Paperback
R2,782
Discovery Miles 27 820
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
|