![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters "Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology", "Proteins in Ionic Liquids: Current Status of Experiments and Simulations", "Lewis Acidic Ionic Liquids" and "Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
As energy technology has emerged as an essential way to provide efficiency and environmental safety, monitoring these energy sources is a way of measuring the effectiveness of the applications and the fundamentals of each design. Technology and Energy Sources Monitoring: Control, Efficiency, and Optimization provides an overall understanding of the technology and energy processes of renewable energy sources, biomaterials and more. By outlining the primary intent of the applications of energy technology and sustainable energy systems development, this book aims to bring a deeper understanding of the innovations and measures taken towards the monitoring of energy sources.
This book presents a novel control method for power converters, referred to as m-mode control. It provides an overview of traditional control methods for inverters - e.g. PWM and SVPWM - and the theory of the m-mode control method, while also discussing and applying m-mode control on various types of converters (including three-phase, nine-switch, five-leg and multi-level inverters, PWM rectifiers and modular multi-level converters). The book provides readers with sufficient background and understanding to delve deeper into the topic of SVPWM control. It is also a valuable guide for engineers and researchers whose work involves power converter control.
This book presents original, peer-reviewed research papers from the 4th Purple Mountain Forum -International Forum on Smart Grid Protection and Control (PMF2019-SGPC), held in Nanjing, China on August 17-18, 2019. Addressing the latest research hotspots in the power industry, such as renewable energy integration, flexible interconnection of large scale power grids, integrated energy system, and cyber physical power systems, the papers share the latest research findings and practical application examples of the new theories, methodologies and algorithms in these areas. As such book a valuable reference for researchers, engineers, and university students.
This book contains selected papers presented during the bi-annual World Renewable Energy Network's Med Green Forum aimed at the international community as well as Mediterranean countries. This forum highlights the importance of growing renewable energy applications in two main sectors: Electricity Generation and the Sustainable Building Sector. In-depth chapters highlight the most current research and technological breakthroughs, covering a broad range of renewable energy technologies and applications in all sectors - for electricity production, heating and cooling, agricultural applications, water desalination, industrial applications and for the transport sectors.
This book presents a new and innovative approach for the use of heat pipes and their application in a number of industrial scenarios, including space and nuclear power plants. The book opens by describing the heat pipe and its concept, including sizing, composition and binding energies. It contains mathematical models of high and low temperature pipes along with extensive design and manufacturing models, characteristics and testing programs. A detailed design and safety analysis concludes the book, emphasizing the importance of heat pipe implementation within the main cooling system and within the core of the reactor, making this book a useful resource for students, engineers, and researchers.
Volume I: A low-dimensional magnet is key to the next-generation of electronic devices. In some aspects, low dimensional magnets refer to nanostructured magnets or single-molecule magnets. They are widely used in biomedicine, technology, industries, and environmental remediation. Emerging Applications of Low Dimensional Magnets covers current state-of-the-art progress in ferromagnetic materials, experimental studies of nanomaterials-based spintronics, and directions for future approaches, applications, and devices. Experts from a variety of areas such as biomedical engineering, materials science, nanotechnology, and electronic engineering have contributed to this handbook making it the most up-to-date and interdisciplinary reference of its kind in the field of low dimensional magnets. Volume II: Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications. Fundamentals along with applications of low-dimensional magnetic materials in spintronics, catalysis, memory, biomedicals, toxic waste removal, aerospace, telecommunications, batteries, supercapacitors, flexible electronics, and many more are covered in detail to provide a full spectrum of their advanced applications. This book offers fresh aspects of nanomagnetic materials and innovative directions to scientists, researchers, and students. It will be of particular interest to materials scientists, engineers, physicists, chemists, and researchers in electronic and spintronic industries, and is suitable as a textbook for undergraduate and graduate studies.
As the world has entered the era of big data, there is a need to give a semantic perspective to the data to find unseen patterns, derive meaningful information, and make intelligent decisions. This 2-volume handbook set is a unique, comprehensive, and complete presentation of the current progress and future potential explorations in the field of data science and related topics. Handbook of Data Science with Semantic Technologies provides a roadmap for a new trend and future development of data science with semantic technologies. The first volume serves as an important guide towards applications of data science with semantic technologies for the upcoming generation and thus becomes a unique resource for both academic researchers and industry professionals. The second volume provides a roadmap for the deployment of semantic technologies in the field of data science that enables users to create intelligence through these technologies by exploring the opportunities while eradicating the current and future challenges. The set explores the optimal use of these technologies to provide the maximum benefit to the user under one comprehensive source. This set consisting of two separate volumes can be utilized independently or together as an invaluable resource for students, scholars, researchers, professionals, and practitioners in the field.
This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
Renewable Energy Powered Desalination Handbook: Applications and Thermodynamics offers a practical handbook on the use of renewable technologies to produce freshwater using sustainable methods. Sections cover the different renewable technologies currently used in the field, including solar, wind, geothermal and nuclear desalination. This coverage is followed by an equally important clear and rigorous discussion of energy recovery and the thermodynamics of desalination processes. While seawater desalination can provide a climate-independent source of drinking water, the process is energy-intensive and environmentally damaging. This book provides readers with the latest methods, processes, and technologies available for utilizing renewable energy applications as a valuable technology. Desalination based on the use of renewable energy sources can provide a sustainable way to produce fresh water. It is expected to become economically attractive as the costs of renewable technologies continue to decline and the prices of fossil fuels continue to increase.
Progress in Optics, Volume 63 is the latest release in a series that presents an overview of the state-of-the-art in optics research. In this update, readers will find timely chapters on measuring polarization states, quantum measurement, optical trapping, spatial/spectral correspondence for mono/poly chromatic light diffraction, and photonic fractional signal processing, amongst other timely topics.
This book, based on the research experience and outcomes of a group of international contributors, addresses a range of advanced energy efficiency technologies and their applications in solar heating, cooling and power generation, while also providing solutions for tackling recurring low efficiency problems in today's systems. It highlights the latest technologies and methods, which can significantly improve the performance of solar systems, enabling readers to design, construct and apply high-performance solar systems in or for their own projects. The contributors provide a systematic introduction to state-of-the-art energy efficiency technologies that demonstrates how to implement innovative solar systems. These technologies include: * heat pipes and loop heat pipes; * phase change materials (PCMs) and PCM slurries; * micro-channel panels; * desiccant/adsorption cycling; * ejector cooling and heat pumps; and * solar concentration and thermoelectric units. The book shows how innovative solar systems applicable to rural and urban buildings can be analysed and demonstrates the successful implementation of these advanced technologies. It delivers the design principles and associated energy performance assessment methods for a range of selected solar heating, cooling and power generation projects. This book offers a valuable source of information for final-year undergraduate students, as well as graduate students and academic lecturers, as it promotes the widespread deployment of advanced solar heating, cooling and power generation technologies applicable for buildings across the globe. The book is also a good point of reference for design engineers and energy consultants who wish to extend their knowledge of advanced technologies used to achieve energy efficiency.
The advent of lithium ion batteries has brought a significant shift in the area of large format battery systems. Previously limited to heavy and bulky lead-acid storage batteries, large format batteries were used only where absolutely necessary as a means of energy storage. The improved energy density, cycle life, power capability, and durability of lithium ion cells has given us electric and hybrid vehicles with meaningful driving range and performance, grid-tied energy storage systems for integration of renewable energy and load leveling, backup power systems and other applications. This book discusses battery management system (BMS) technology for large format lithium-ion battery packs from a systems perspective. This resource covers the future of BMS, giving us new ways to generate, use, and store energy, and free us from the perils of non-renewable energy sources. This book provides a full update on BMS technology, covering software, hardware, integration, testing, and safety.
Practical Methods for Analysis and Design of HV Installation Grounding Systems gives readers a basic understanding of the modeling characteristics of the major components of a complex grounding system. One by one, the author develops and analyzes each component as a standalone element, but then puts them together, considering their mutual disposition, or so-called proximity effect. This is the first book to enable the making and analysis of the most complex grounding systems that are typical for HV substations located in urban areas that uses relatively simple mathematical operations instead of modern computers. Since the presented methods enable problem-solving for more complex issues than the ones solved using National, IEC and/or IEEE standards, this book can be considered as an appendix to these standards.
This book offers a revealing picture of the myths and realities of the energy world by one of our most renowned energy experts and managers. At the end of the first decade of the 21st century, the human race finds itself caught in an "energy trap." Carbon-rich fossil fuels—coal, petroleum and natural gas—are firmly entrenched as the dominant sources of our energy and power. Their highly concentrated forms, versatility of use, ease of transport and storage, ready availability, and comparatively low costs combine to give fossil fuels an unassailable competitive advantage over all alternative sources of energy. This economic reality means that fossil fuels will inevitably continue to be the backbone of the global economy for the next quarter of a century, even while the adverse climate and environmental effects of our dependence on fossil fuels hurtle toward global crisis levels. To avert unacceptable environmental consequences, the world must deliberately and incrementally supplant fossil fuels with alternative energy sources, on a schedule that will have them overtake fossil fuels in the world's energy budget by 2035. To achieve this urgent goal without massive economic dislocation and reduction in standards of living, global investment in fossil fuel efficiency will be just as important as the development and massive deployment of alternative energy technologies and delivery systems. In this eagerly awaited sequel to his prize-winning bestseller, The Age of Oil, Leonardo Maugeri, the strategy director of one of the world's biggest energy companies, puts forward a hard-headed, concrete plan in simple everyday language for how to shift the world economy's primary energy dependence from fossil fuels to renewable energies by 2035. Assuming no specialized knowledge, the author walks the reader chapter by chapter through each of the fossil fuels (oil, coal, and natural gas) and each of the alternative energy sources (nuclear, hydroelectric, biofuel, wind, solar, geothermal, and hydrogen). Drawing on the unparalleled data and analysis resources at his command, Maugeri assesses the problems and advantages of each energy source in turn in order to constrain the optimal mix of energy sources that the world should be aiming for in 2035. Critically, he lays out the arduous path for getting from here to there. Maugeri shows that the next 25 years will be a rocky marriage between the old and the new energy paradigms, during which we must dramatically improve the efficiency of our continuing use of fossil fuels, while driving ahead on all fronts to an energy future based on a suite of sustainable energy sources.
Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value examines the use of biomass as a raw material, including terrestrial and aquatic sources to obtain extracts (e.g. polyphenols), biofuels, and/or intermediates (furfural, levulinates) through chemical and biochemical processes. The book also covers the production of natural polymers using biomass and the biosynthetic process, cellulose modified by biochemical and chemical methods, and other biochemicals that can be used in the synthesis of various pharmaceuticals. Featuring case studies, discussions of sustainability, and nanomedical, biomedical, and pharmaceutical applications, Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value is a crucial resource for biotechnologists, biochemical engineers, biochemists, microbiologists, and research students in these areas, as well as entrepreneurs, policy makers, stakeholders, and politicians.
This book addresses the emerging trend of smart grids in power systems. It discusses the advent of smart grids and selected technical implications; further, by combining the perspectives of researchers from Europe and South America, the book captures the status quo of and approaches to smart grids in a wide range of countries. It describes the basic concepts, enabling readers to understand the theoretical aspects behind smart grid formation, while also examining current challenges and philosophical discussions. Like the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term - the "prosumer" - is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.
This book presents a selection of recently developed collective and computational intelligence techniques, which it subsequently applies to energy management problems ranging from performance analysis to economic analysis, and from strategic analysis to operational analysis, with didactic numerical examples. As a form of intelligence emerging from the collaboration and competition of individuals, collective and computational intelligence addresses new methodological, theoretical, and practical aspects of complex energy management problems. The book offers an excellent reference guide for practitioners, researchers, lecturers and postgraduate students pursuing research on intelligence in energy management. The contributing authors are recognized researchers in the energy research field.
Wind Energy Systems is designed for undergraduate engineering courses, with a focus on multidisciplinary design of a wind energy system. The text covers basic wind power concepts and components - wind characteristics and modeling, rotor aerodynamics, lightweight flexible structures, wind farms, aerodynamics, wind turbine control, acoustics, energy storage, and economics. These topics are applied to produce a new conceptual wind energy design, showing the interplay of various design aspects in a complete system. An ongoing case study demonstrates the integration of various component topics, and MATLAB examples are included to show computerized design analysis procedures and techniques.
Well Control for Completions and Interventions explores the standards that ensure safe and efficient production flow, well integrity and well control for oil rigs, focusing on the post-Macondo environment where tighter regulations and new standards are in place worldwide. Too many training facilities currently focus only on the drilling side of the well's cycle when teaching well control, hence the need for this informative guide on the topic. This long-awaited manual for engineers and managers involved in the well completion and intervention side of a well's life covers the fundamentals of design, equipment and completion fluids. In addition, the book covers more important and distinguishing components, such as well barriers and integrity envelopes, well kill methods specific to well completion, and other forms of operations that involve completion, like pumping and stimulation (including hydraulic fracturing and shale), coiled tubing, wireline, and subsea intervention.
This book presents a new topology of the non-isolated online uninterruptible power supply (UPS) system consisting of 3 components: bridgeless boost rectifier, battery charger/discharger, and an inverter. The online UPS system is considered to be the most preferable UPS due to its high level of power quality and proven reliability against all types of line disturbances and power outages. The new battery charger/discharger reduces the battery bank voltage, which improves performance and reliability, while a new control method for the inverter regulates the output voltage for both linear and nonlinear loads. The proposed USP system shows an efficiency of 94% during battery mode and 92% during the normal mode of operation.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications. |
You may like...
Prof. of Drug Substances, Excipients and…
Abdulrahman Al-Majed
Hardcover
R5,239
Discovery Miles 52 390
New Targets for the Treatment of…
William B. Campbell, John D. Imig
Hardcover
R5,466
Discovery Miles 54 660
|