![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering
Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.
With production from unconventional rigs continuing to escalate and refineries grappling with the challenges of shale and heavier oil feedstocks, petroleum engineers and refinery managers must ensure that equipment used with today's crude oil is protected from fouling deposits Crude Oil Fouling addresses this overarching challenge for the petroleum community with clear explanations on what causes fouling, current models and new approaches to evaluate and study the formation of deposits, and how today's models could be applied from lab experiment to onsite field usability for not just the refinery, but for the rig, platform, or pipeline. Crude Oil Fouling is a must-have reference for every petroleum engineer's library that gives the basic framework needed to analyze, model, and integrate the best fouling strategies and operations for crude oil systems.
Compendium of Hydrogen Energy: Hydrogen Production and Purification, the first text in a four-volume series, focuses on the production of hydrogen. As many experts believe that the hydrogen economy will eventually replace the fossil fuel economy as our primary source of energy, the text provides a timely discussion on this interesting topic. The text details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen purification processes.
This expansive reference on the use of clean energy technologies in the aviation industry focuses on tools and solutions for maximizing the energy efficiency of aircrafts, airports, and other auxiliary components of air transit. Key topics range from predicting impacts of avionics and control systems to energy/exergy performance analyses of flight mechanics and computational fluid dynamics. The book includes findings both from experimental investigations and functional extant systems, ranging from propulsion technologies for aerospace vehicles to airport design to energy recovery systems. Engineers, researchers and students will benefit from the broad reach and numerous engineering examples provided.
Energy storage devices are a crucial area of research and development across many engineering disciplines and industries. While batteries provide the significant advantage of high energy density, their limited life cycles, disposal challenges and charge and discharge management constraints undercut their effectiveness in certain applications. Compared to electrochemical cells, supercapacitors are charge-storage devices with much longer life cycles, yet they have traditionally been hobbled by limited DC voltage capabilities and energy density. However, recent advances are improving these issues. This book provides the opportunity to expand your knowledge of
innovative supercapacitor applications, comparing them to other
commonly used energy storage devices. It will strengthen your
understanding of energy storage from a practical,
applications-based point-of-view, without requiring detailed
examination of underlying electrochemical equations. No matter what
your field, you will find inspiration and guidance in the
cutting-edge advances in energy storage devices in this book.
"Physics and Engineering of Radiation Detection "presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition isfully revised and provides the latest
developments in detector technology and analyses software. Also,
more material related to measurements in particle physics and a
complete solutions manual have been added.
This book focuses on a broad spectrum of electrical engineering materials at the undergraduate and postgraduate level. It deals with fundamentals of the subject matter in a comprehensive way with emphasis on different devices in the field of material science. The text includes new developments in the subject elaborating electronic devices and their applications. The subject is particularly covered and explained lucidly in areas like magnetic materials, semiconductors, semiconductor devices, superconductors, and insulating materials.
This volume investigates the impact of energy issues on geostrategy. The crucial importance of energy and the fact that fossil fuels are not equally distributed among countries means that decisions are not only based on financial arguments, but also on the political impact. It can be said that "Energy is Politics". In three parts - 1) Energy Economy; 2) Finance; and 3) Geostrategy - academics and practitioners address both economic and political questions and present cases from several countries. This is the sixth volume in a series on energy organized by the Centre for Energy and Value Issues (CEVI). The previous volumes in the series were: Financial Aspects in Energy (2011), Energy Economics and Financial Markets (2012), Perspectives on Energy Risk (2014), Energy Technology and Valuation Issues (2015) and Energy and Finance (2016).
Assessing the Energy Efficiency of Pumps and Pump Units, developed in cooperation with Europump, is the first book available providing the background, methodology, and assessment tools for understanding and calculating energy efficiency for pumps and extended products (pumps+motors+drives). Responding to new EU requirements for pump efficiency, and US DOE exploratory work in setting pump energy efficiency guidelines, this book provides explanation, derivation, and illustration of PA and EPA methods for assessing energy efficiency. It surveys legislation related to pump energy efficiencies, provides background on pump and motor efficiencies, and describes the concept of Energy Efficiency Index (EEI) for circulators and single and multi-pump systems.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This first volume covers the following main topics: Active Components and Vibration Control; Balancing; Bearings: Fluid Film Bearings, Magnetic Bearings, Rolling Bearings and Seals; and Blades, Bladed Systems and Impellers.
This book gathers the proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (MICRADS), held at the Military Engineering Institute, Rio de Janeiro, Brazil, from 8 to 10th May 2019. It covers a variety of topics in systems, communication and defense; strategy and political-administrative vision in defense; and engineering and technologies applied to defense. Given its scope, it offers a valuable resource for practitioners, researchers, and students alike.
Reprocessing and Recycling of Spent Nuclear Fuel presents an authoritative overview of spent fuel reprocessing, considering future prospects for advanced closed fuel cycles. Part One introduces the recycling and reprocessing of spent nuclear fuel, reviewing past and current technologies, the possible implications of Generation IV nuclear reactors, and associated safely and security issues. Parts Two and Three focus on aqueous-based reprocessing methods and pyrochemical methods, while final chapters consider the cross-cutting aspects of engineering and process chemistry and the potential for implementation of advanced closed fuel cycles in different parts of the world.
The Renewable Energy Systems: Fundamentals and Source Characteristics is a set book coming in two volumes. The first volume is named "Fundamentals and Source Characteristics of Renewable Energy Systems". It will cover electric energy from alternative energy sources including solar, wind, water, hydropower, geothermal and ocean energy. This textbook is intended for an audience with little or no power engineering or renewable energy background. The second volume is called "Energy Storage, Grid Integration, Energy Economics and the Environment". This book will cover energy storage systems, bioenergy and hydrogen economy, grid integration of the renewable energy systems, distributed generation, economic analysis and environmental impacts of renewable energy systems. Solutions manual and Power Point slides are also included for instructors.
As the electrical industry continues to develop, one sector that still faces a range of concerns is the electrical distribution system. Excessive industrialization and inadequate billing are just a few issues that have plagued this electrical sector as it advances into the smart grid environment. Research is necessary to explore the possible solutions in fixing these problems and developing the distribution sector into an active and smart system. New Solutions and Technologies in Electrical Distribution Networks is a collection of innovative research on the methods and applications of solving major issues within the electrical distribution system. Some issues covered within the publication include distribution losses, improper monitoring of system, renewable energy integration with micro-grid and distributed energy sources, and smart home energy management system modelling. This book is ideally designed for power engineers, electrical engineers, energy professionals, developers, technologists, policymakers, researchers, academicians, industry professionals, and students seeking current research on improving this key sector of the electrical industry.
The 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015) was held from 19-23 October 2015. This congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental and economic perspectives of energy. These proceedings included 40 peer-reviewed technical papers, submitted by leading academic and research institutions from over 23 countries and represented some of the most cutting-edge researches available. The sections included in the 40 papers are listed as follows: Solar Energy, Fuel cells, Hydrogen productions, Hydrogen storage, Energy storage, Energy saving, Biofuels and Bioenergy, Wind Energy, Nuclear Energy, Fossil Energy, Hydropower, Carbon capture and storage, Materials for renewable energy storage and conversion, Photovoltaics and solar cells, Fuel generation from renewables (catalysis), Carbon dioxide sequestration and conversion, Materials for energy saving, Thermoelectrics, Energy saving in buildings, Bio-Assessment and Toxicology, Air pollution from mobile and stationary sources, Transport of Air Pollutants, Environment-Friendly Construction and Development, Energy Management Systems.
This leading-edge volume on advances in photovoltaic technology features diverse contributions from experts in every major geographic PV market. It examines emerging applications such as electricity grid load-balancing and demand- response, PV storage systems, photovoltaic/thermal solar collectors and carbon-offset in buildings. Engineers, researchers, developers and students alike will find new avenues for exploration and fresh insights into this continually evolving field. Highlights the most recent advances in Photovoltaics, from Next-Gen Storage Systems to Bifacial PV/T Solar Collectors; Provides expert insights on the recent evolution and near future of PV markets around the globe; Covers applications from grid-tied storage and power generation to green buildings.
This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses.
This book presents papers based on the presentations and discussions at the international workshop on Big Data Smart Transportation Analytics held July 16 and 17, 2016 at Tongji University in Shanghai and chaired by Professors Ukkusuri and Yang. The book is intended to explore a multidisciplinary perspective to big data science in urban transportation, motivated by three critical observations: The rapid advances in the observability of assets, platforms for matching supply and demand, thereby allowing sharing networks previously unimaginable. The nearly universal agreement that data from multiple sources, such as cell phones, social media, taxis and transit systems can allow an understanding of infrastructure systems that is critically important to both quality of life and successful economic competition at the global, national, regional, and local levels. There is presently a lack of unifying principles and methodologies that approach big data urban systems. The workshop brought together varied perspectives from engineering, computational scientists, state and central government, social scientists, physicists, and network science experts to develop a unifying set of research challenges and methodologies that are likely to impact infrastructure systems with a particular focus on transportation issues. The book deals with the emerging topic of data science for cities, a central topic in the last five years that is expected to become critical in academia, industry, and the government in the future. There is currently limited literature for researchers to know the opportunities and state of the art in this emerging area, so this book fills a gap by synthesizing the state of the art from various scholars and help identify new research directions for further study.
Solid biofuels, in different trading forms, constitute an integral component of the energy mix of almost all developed and developing countries. Either in the form of pellets, briquettes, chips, firewood, or even as raw feedstock, solid biofuels are used mainly in the heating and power sector. Numerous sustainability concerns, focusing on the environmental, economic and technical aspects of solid biofuels exploitation, led to considerable advances in the recent years in this field. These developments mainly focus on the pre-treatment processes of the solid biomass to biofuels chain, the minimum requirements of the produced solid biofuels, as well as the efficiency and the environmental performance of their thermochemical conversion routes. This work aspires to provide the state of the art in the field of the exploitation of solid biofuels to present the main advances as well as the major challenges of this scientific fields. The topics presented in this book were examined and dealt with by the authors in the past few years, in numerous research projects and scientific publications. This book compiles all the assembled experience of the past few years, and aims to provide an overview of the solid biofuels exploitation field. Presents the latest standards and considerations on solid biofuels technical requirements; Contains numerous examples on applications in the field of solid biofuels thermochemical conversion, as well as the state of the art in this field; Includes sustainability aspects, including life cycle assessment aspects and financial concerns for the exploitation of solid biofuels.
This book presents the basics of linear and nonlinear optimization analysis for both single and multi-objective problems in hydrosystem engineering. The book includes several examples with various levels of complexity in different fields of water resources engineering. The examples are solved step by step to assist the reader and to make it easier to understand the concepts. In addition, the latest tools and methods are presented to help students, researchers, engineers and water managers to properly conceptualize and formulate resource allocation problems, and to deal with the complexity of constraints in water demand and available supplies in an appropriate way. "
This multi-disciplinary volume presents information on the
state-of-the-art in sustainable energy technologies key to tackling
the world s energy challenges and achieving environmentally benign
solutions. Its unique amalgamation of the latest technical
information, research findings and examples of successfully applied
new developments in the area of sustainable energy will be of keen
interest to engineers, students, practitioners, scientists and
researchers working with sustainable energy technologies. Problem
statements, projections, new concepts, models, experiments,
measurements and simulations from not only engineering and science,
but disciplines as diverse as ecology, education, economics and
information technology are included, in order to create a truly
holistic vision of the sustainable energy field. The
contributionsfeature coverage of topicsincluding solar and wind
energy, biomass and biofuels, waste-to-energy, renewable fuels,
geothermal and hydrogen power, efficiency gains in fossil fuels and
energy storage technologies including batteries and fuel
cells.
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
One of the most critical requirements for safe and reliable nuclear power plant operations is the availability of competent maintenance personnel. However, just as the nuclear power industry is experiencing a renaissance, it is also experiencing an exodus of seasoned maintenance professionals due to retirement. The perfect guide for engineers just entering the field or experienced maintenance supervisors who need to keep abreast of the latest industry best practices, Nuclear Power Plant Maintenance: Mechanical Systems, Equipment and Safety covers the most common issues faced in day-to-day operations and provides practical, technically proven solutions. The book also explains how to navigate the various maintenance codes, standards and regulations for the nuclear power industry. |
You may like...
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R1,993
Discovery Miles 19 930
Risk Assessment and Management for Ships…
Yong Bai, Jeom Kee Paik
Paperback
Clean Energy and Resources Recovery…
Vinay Kumar Tyagi, Kaoutar Aboudi
Paperback
R3,581
Discovery Miles 35 810
Bioenergy Engineering - Fundamentals…
Krushna Prasad Shadangi, Prakash Kumar Sarangi, …
Paperback
R4,682
Discovery Miles 46 820
|